| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x | ⊢ 𝑋  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | minvec.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 3 |  | minvec.n | ⊢ 𝑁  =  ( norm ‘ 𝑈 ) | 
						
							| 4 |  | minvec.u | ⊢ ( 𝜑  →  𝑈  ∈  ℂPreHil ) | 
						
							| 5 |  | minvec.y | ⊢ ( 𝜑  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 6 |  | minvec.w | ⊢ ( 𝜑  →  ( 𝑈  ↾s  𝑌 )  ∈  CMetSp ) | 
						
							| 7 |  | minvec.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minvec.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 9 |  | minvec.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 10 |  | minvec.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 11 |  | minvec.d | ⊢ 𝐷  =  ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑠  =  𝑟  →  ( ( 𝑆 ↑ 2 )  +  𝑠 )  =  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) | 
						
							| 13 | 12 | breq2d | ⊢ ( 𝑠  =  𝑟  →  ( ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑠 )  ↔  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ) | 
						
							| 14 | 13 | rabbidv | ⊢ ( 𝑠  =  𝑟  →  { 𝑧  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑠 ) }  =  { 𝑧  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐴 𝐷 𝑧 )  =  ( 𝐴 𝐷 𝑦 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  =  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ) | 
						
							| 17 | 16 | breq1d | ⊢ ( 𝑧  =  𝑦  →  ( ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 )  ↔  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) ) ) | 
						
							| 18 | 17 | cbvrabv | ⊢ { 𝑧  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } | 
						
							| 19 | 14 18 | eqtrdi | ⊢ ( 𝑠  =  𝑟  →  { 𝑧  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑠 ) }  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 20 | 19 | cbvmptv | ⊢ ( 𝑠  ∈  ℝ+  ↦  { 𝑧  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑠 ) } )  =  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 21 | 20 | rneqi | ⊢ ran  ( 𝑠  ∈  ℝ+  ↦  { 𝑧  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑠 ) } )  =  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 22 |  | eqid | ⊢ ∪  ( 𝐽  fLim  ( 𝑋 filGen ran  ( 𝑠  ∈  ℝ+  ↦  { 𝑧  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑠 ) } ) ) )  =  ∪  ( 𝐽  fLim  ( 𝑋 filGen ran  ( 𝑠  ∈  ℝ+  ↦  { 𝑧  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑠 ) } ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( ( ( ( ( 𝐴 𝐷 ∪  ( 𝐽  fLim  ( 𝑋 filGen ran  ( 𝑠  ∈  ℝ+  ↦  { 𝑧  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑠 ) } ) ) ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  =  ( ( ( ( ( 𝐴 𝐷 ∪  ( 𝐽  fLim  ( 𝑋 filGen ran  ( 𝑠  ∈  ℝ+  ↦  { 𝑧  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑧 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑠 ) } ) ) ) )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 11 21 22 23 | minveclem4 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) |