Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
⊢ 𝑋 = ( Base ‘ 𝑈 ) |
2 |
|
minvec.m |
⊢ − = ( -g ‘ 𝑈 ) |
3 |
|
minvec.n |
⊢ 𝑁 = ( norm ‘ 𝑈 ) |
4 |
|
minvec.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) |
5 |
|
minvec.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) |
6 |
|
minvec.w |
⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) |
7 |
|
minvec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minvec.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑈 ) |
9 |
|
minvec.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
10 |
|
minvec.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
11 |
|
minvec.d |
⊢ 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑠 = 𝑟 → ( ( 𝑆 ↑ 2 ) + 𝑠 ) = ( ( 𝑆 ↑ 2 ) + 𝑟 ) ) |
13 |
12
|
breq2d |
⊢ ( 𝑠 = 𝑟 → ( ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) ↔ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) ) ) |
14 |
13
|
rabbidv |
⊢ ( 𝑠 = 𝑟 → { 𝑧 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } = { 𝑧 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) |
15 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐴 𝐷 𝑧 ) = ( 𝐴 𝐷 𝑦 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) = ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) ↔ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) ) ) |
18 |
17
|
cbvrabv |
⊢ { 𝑧 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } = { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } |
19 |
14 18
|
eqtrdi |
⊢ ( 𝑠 = 𝑟 → { 𝑧 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } = { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) |
20 |
19
|
cbvmptv |
⊢ ( 𝑠 ∈ ℝ+ ↦ { 𝑧 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) = ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) |
21 |
20
|
rneqi |
⊢ ran ( 𝑠 ∈ ℝ+ ↦ { 𝑧 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) = ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) |
22 |
|
eqid |
⊢ ∪ ( 𝐽 fLim ( 𝑋 filGen ran ( 𝑠 ∈ ℝ+ ↦ { 𝑧 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) ) ) = ∪ ( 𝐽 fLim ( 𝑋 filGen ran ( 𝑠 ∈ ℝ+ ↦ { 𝑧 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) ) ) |
23 |
|
eqid |
⊢ ( ( ( ( ( 𝐴 𝐷 ∪ ( 𝐽 fLim ( 𝑋 filGen ran ( 𝑠 ∈ ℝ+ ↦ { 𝑧 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) ) ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) = ( ( ( ( ( 𝐴 𝐷 ∪ ( 𝐽 fLim ( 𝑋 filGen ran ( 𝑠 ∈ ℝ+ ↦ { 𝑧 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) ) ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 21 22 23
|
minveclem4 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |