Metamath Proof Explorer


Theorem minveclem5

Description: Lemma for minvec . Discharge the assumptions in minveclem4 . (Contributed by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses minvec.x 𝑋 = ( Base ‘ 𝑈 )
minvec.m = ( -g𝑈 )
minvec.n 𝑁 = ( norm ‘ 𝑈 )
minvec.u ( 𝜑𝑈 ∈ ℂPreHil )
minvec.y ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝑈 ) )
minvec.w ( 𝜑 → ( 𝑈s 𝑌 ) ∈ CMetSp )
minvec.a ( 𝜑𝐴𝑋 )
minvec.j 𝐽 = ( TopOpen ‘ 𝑈 )
minvec.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
minvec.s 𝑆 = inf ( 𝑅 , ℝ , < )
minvec.d 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) )
Assertion minveclem5 ( 𝜑 → ∃ 𝑥𝑌𝑦𝑌 ( 𝑁 ‘ ( 𝐴 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 minvec.x 𝑋 = ( Base ‘ 𝑈 )
2 minvec.m = ( -g𝑈 )
3 minvec.n 𝑁 = ( norm ‘ 𝑈 )
4 minvec.u ( 𝜑𝑈 ∈ ℂPreHil )
5 minvec.y ( 𝜑𝑌 ∈ ( LSubSp ‘ 𝑈 ) )
6 minvec.w ( 𝜑 → ( 𝑈s 𝑌 ) ∈ CMetSp )
7 minvec.a ( 𝜑𝐴𝑋 )
8 minvec.j 𝐽 = ( TopOpen ‘ 𝑈 )
9 minvec.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )
10 minvec.s 𝑆 = inf ( 𝑅 , ℝ , < )
11 minvec.d 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) )
12 oveq2 ( 𝑠 = 𝑟 → ( ( 𝑆 ↑ 2 ) + 𝑠 ) = ( ( 𝑆 ↑ 2 ) + 𝑟 ) )
13 12 breq2d ( 𝑠 = 𝑟 → ( ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) ↔ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) ) )
14 13 rabbidv ( 𝑠 = 𝑟 → { 𝑧𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } = { 𝑧𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } )
15 oveq2 ( 𝑧 = 𝑦 → ( 𝐴 𝐷 𝑧 ) = ( 𝐴 𝐷 𝑦 ) )
16 15 oveq1d ( 𝑧 = 𝑦 → ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) = ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) )
17 16 breq1d ( 𝑧 = 𝑦 → ( ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) ↔ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) ) )
18 17 cbvrabv { 𝑧𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } = { 𝑦𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) }
19 14 18 eqtrdi ( 𝑠 = 𝑟 → { 𝑧𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } = { 𝑦𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } )
20 19 cbvmptv ( 𝑠 ∈ ℝ+ ↦ { 𝑧𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) = ( 𝑟 ∈ ℝ+ ↦ { 𝑦𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } )
21 20 rneqi ran ( 𝑠 ∈ ℝ+ ↦ { 𝑧𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) = ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } )
22 eqid ( 𝐽 fLim ( 𝑋 filGen ran ( 𝑠 ∈ ℝ+ ↦ { 𝑧𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) ) ) = ( 𝐽 fLim ( 𝑋 filGen ran ( 𝑠 ∈ ℝ+ ↦ { 𝑧𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) ) )
23 eqid ( ( ( ( ( 𝐴 𝐷 ( 𝐽 fLim ( 𝑋 filGen ran ( 𝑠 ∈ ℝ+ ↦ { 𝑧𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) ) ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) = ( ( ( ( ( 𝐴 𝐷 ( 𝐽 fLim ( 𝑋 filGen ran ( 𝑠 ∈ ℝ+ ↦ { 𝑧𝑌 ∣ ( ( 𝐴 𝐷 𝑧 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑠 ) } ) ) ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) )
24 1 2 3 4 5 6 7 8 9 10 11 21 22 23 minveclem4 ( 𝜑 → ∃ 𝑥𝑌𝑦𝑌 ( 𝑁 ‘ ( 𝐴 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑦 ) ) )