Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
⊢ 𝑋 = ( Base ‘ 𝑈 ) |
2 |
|
minvec.m |
⊢ − = ( -g ‘ 𝑈 ) |
3 |
|
minvec.n |
⊢ 𝑁 = ( norm ‘ 𝑈 ) |
4 |
|
minvec.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) |
5 |
|
minvec.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) |
6 |
|
minvec.w |
⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) |
7 |
|
minvec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minvec.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑈 ) |
9 |
|
minvec.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
10 |
|
minvec.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
11 |
|
minvec.d |
⊢ 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) |
12 |
11
|
oveqi |
⊢ ( 𝐴 𝐷 𝑥 ) = ( 𝐴 ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) 𝑥 ) |
13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
15 |
1 14
|
lssss |
⊢ ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌 ⊆ 𝑋 ) |
16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
17 |
16
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
18 |
13 17
|
ovresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) 𝑥 ) = ( 𝐴 ( dist ‘ 𝑈 ) 𝑥 ) ) |
19 |
12 18
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑥 ) = ( 𝐴 ( dist ‘ 𝑈 ) 𝑥 ) ) |
20 |
|
cphngp |
⊢ ( 𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp ) |
21 |
4 20
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmGrp ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑈 ∈ NrmGrp ) |
23 |
|
eqid |
⊢ ( dist ‘ 𝑈 ) = ( dist ‘ 𝑈 ) |
24 |
3 1 2 23
|
ngpds |
⊢ ( ( 𝑈 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ( dist ‘ 𝑈 ) 𝑥 ) = ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ) |
25 |
22 13 17 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 ( dist ‘ 𝑈 ) 𝑥 ) = ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ) |
26 |
19 25
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ↑ 2 ) ) |
28 |
1 2 3 4 5 6 7 8 9
|
minveclem1 |
⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
30 |
29
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ⊆ ℝ ) |
31 |
29
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ≠ ∅ ) |
32 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ∈ ℝ ) |
33 |
29
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
34 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) |
35 |
34
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
36 |
35
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
37 |
32 33 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
38 |
|
infrecl |
⊢ ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
39 |
30 31 37 38
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
40 |
10 39
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ ℝ ) |
41 |
40
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
42 |
41
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
43 |
42
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑆 ↑ 2 ) + 0 ) = ( 𝑆 ↑ 2 ) ) |
44 |
27 43
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ( ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ↑ 2 ) ≤ ( 𝑆 ↑ 2 ) ) ) |
45 |
|
cphlmod |
⊢ ( 𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod ) |
46 |
4 45
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑈 ∈ LMod ) |
48 |
1 2
|
lmodvsubcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 − 𝑥 ) ∈ 𝑋 ) |
49 |
47 13 17 48
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 − 𝑥 ) ∈ 𝑋 ) |
50 |
1 3
|
nmcl |
⊢ ( ( 𝑈 ∈ NrmGrp ∧ ( 𝐴 − 𝑥 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ∈ ℝ ) |
51 |
22 49 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ∈ ℝ ) |
52 |
1 3
|
nmge0 |
⊢ ( ( 𝑈 ∈ NrmGrp ∧ ( 𝐴 − 𝑥 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ) |
53 |
22 49 52
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ) |
54 |
|
infregelb |
⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ 0 ∈ ℝ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
55 |
30 31 37 32 54
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
56 |
33 55
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ inf ( 𝑅 , ℝ , < ) ) |
57 |
56 10
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ 𝑆 ) |
58 |
51 40 53 57
|
le2sqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑆 ↔ ( ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ↑ 2 ) ≤ ( 𝑆 ↑ 2 ) ) ) |
59 |
10
|
breq2i |
⊢ ( ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑆 ↔ ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ) |
60 |
|
infregelb |
⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ∈ ℝ ) → ( ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑤 ) ) |
61 |
30 31 37 51 60
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑤 ) ) |
62 |
59 61
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑆 ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑤 ) ) |
63 |
44 58 62
|
3bitr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑤 ) ) |
64 |
9
|
raleqi |
⊢ ( ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑤 ) |
65 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ V |
66 |
65
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ V |
67 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
68 |
|
breq2 |
⊢ ( 𝑤 = ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑤 ↔ ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ) |
69 |
67 68
|
ralrnmptw |
⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ) |
70 |
66 69
|
ax-mp |
⊢ ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
71 |
64 70
|
bitri |
⊢ ( ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
72 |
63 71
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ) |