| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x | ⊢ 𝑋  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | minvec.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 3 |  | minvec.n | ⊢ 𝑁  =  ( norm ‘ 𝑈 ) | 
						
							| 4 |  | minvec.u | ⊢ ( 𝜑  →  𝑈  ∈  ℂPreHil ) | 
						
							| 5 |  | minvec.y | ⊢ ( 𝜑  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 6 |  | minvec.w | ⊢ ( 𝜑  →  ( 𝑈  ↾s  𝑌 )  ∈  CMetSp ) | 
						
							| 7 |  | minvec.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minvec.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 9 |  | minvec.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 10 |  | minvec.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 11 |  | minvec.d | ⊢ 𝐷  =  ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 12 | 11 | oveqi | ⊢ ( 𝐴 𝐷 𝑥 )  =  ( 𝐴 ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) 𝑥 ) | 
						
							| 13 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 14 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 15 | 1 14 | lssss | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  𝑌  ⊆  𝑋 ) | 
						
							| 16 | 5 15 | syl | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 17 | 16 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑥  ∈  𝑋 ) | 
						
							| 18 | 13 17 | ovresd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝐴 ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) 𝑥 )  =  ( 𝐴 ( dist ‘ 𝑈 ) 𝑥 ) ) | 
						
							| 19 | 12 18 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑥 )  =  ( 𝐴 ( dist ‘ 𝑈 ) 𝑥 ) ) | 
						
							| 20 |  | cphngp | ⊢ ( 𝑈  ∈  ℂPreHil  →  𝑈  ∈  NrmGrp ) | 
						
							| 21 | 4 20 | syl | ⊢ ( 𝜑  →  𝑈  ∈  NrmGrp ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑈  ∈  NrmGrp ) | 
						
							| 23 |  | eqid | ⊢ ( dist ‘ 𝑈 )  =  ( dist ‘ 𝑈 ) | 
						
							| 24 | 3 1 2 23 | ngpds | ⊢ ( ( 𝑈  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝐴 ( dist ‘ 𝑈 ) 𝑥 )  =  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) ) ) | 
						
							| 25 | 22 13 17 24 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝐴 ( dist ‘ 𝑈 ) 𝑥 )  =  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) ) ) | 
						
							| 26 | 19 25 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑥 )  =  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) ) ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  =  ( ( 𝑁 ‘ ( 𝐴  −  𝑥 ) ) ↑ 2 ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 9 | minveclem1 | ⊢ ( 𝜑  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 30 | 29 | simp1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑅  ⊆  ℝ ) | 
						
							| 31 | 29 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑅  ≠  ∅ ) | 
						
							| 32 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  0  ∈  ℝ ) | 
						
							| 33 | 29 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) | 
						
							| 34 |  | breq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ≤  𝑤  ↔  0  ≤  𝑤 ) ) | 
						
							| 35 | 34 | ralbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 36 | 35 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 37 | 32 33 36 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 38 |  | infrecl | ⊢ ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 39 | 30 31 37 38 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 40 | 10 39 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑆  ∈  ℝ ) | 
						
							| 41 | 40 | resqcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 42 | 41 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝑆 ↑ 2 )  ∈  ℂ ) | 
						
							| 43 | 42 | addridd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( 𝑆 ↑ 2 )  +  0 )  =  ( 𝑆 ↑ 2 ) ) | 
						
							| 44 | 27 43 | breq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ↔  ( ( 𝑁 ‘ ( 𝐴  −  𝑥 ) ) ↑ 2 )  ≤  ( 𝑆 ↑ 2 ) ) ) | 
						
							| 45 |  | cphlmod | ⊢ ( 𝑈  ∈  ℂPreHil  →  𝑈  ∈  LMod ) | 
						
							| 46 | 4 45 | syl | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  𝑈  ∈  LMod ) | 
						
							| 48 | 1 2 | lmodvsubcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐴  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝐴  −  𝑥 )  ∈  𝑋 ) | 
						
							| 49 | 47 13 17 48 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝐴  −  𝑥 )  ∈  𝑋 ) | 
						
							| 50 | 1 3 | nmcl | ⊢ ( ( 𝑈  ∈  NrmGrp  ∧  ( 𝐴  −  𝑥 )  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ∈  ℝ ) | 
						
							| 51 | 22 49 50 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ∈  ℝ ) | 
						
							| 52 | 1 3 | nmge0 | ⊢ ( ( 𝑈  ∈  NrmGrp  ∧  ( 𝐴  −  𝑥 )  ∈  𝑋 )  →  0  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) ) ) | 
						
							| 53 | 22 49 52 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  0  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) ) ) | 
						
							| 54 |  | infregelb | ⊢ ( ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 )  ∧  0  ∈  ℝ )  →  ( 0  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 55 | 30 31 37 32 54 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( 0  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 56 | 33 55 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  0  ≤  inf ( 𝑅 ,  ℝ ,   <  ) ) | 
						
							| 57 | 56 10 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  0  ≤  𝑆 ) | 
						
							| 58 | 51 40 53 57 | le2sqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑆  ↔  ( ( 𝑁 ‘ ( 𝐴  −  𝑥 ) ) ↑ 2 )  ≤  ( 𝑆 ↑ 2 ) ) ) | 
						
							| 59 | 10 | breq2i | ⊢ ( ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑆  ↔  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  inf ( 𝑅 ,  ℝ ,   <  ) ) | 
						
							| 60 |  | infregelb | ⊢ ( ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 )  ∧  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ∈  ℝ )  →  ( ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑤 ) ) | 
						
							| 61 | 30 31 37 51 60 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑤 ) ) | 
						
							| 62 | 59 61 | bitrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑆  ↔  ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑤 ) ) | 
						
							| 63 | 44 58 62 | 3bitr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ↔  ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑤 ) ) | 
						
							| 64 | 9 | raleqi | ⊢ ( ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑤  ↔  ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑤 ) | 
						
							| 65 |  | fvex | ⊢ ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  V | 
						
							| 66 | 65 | rgenw | ⊢ ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  V | 
						
							| 67 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 68 |  | breq2 | ⊢ ( 𝑤  =  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  →  ( ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑤  ↔  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 69 | 67 68 | ralrnmptw | ⊢ ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  V  →  ( ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 70 | 66 69 | ax-mp | ⊢ ( ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 71 | 64 70 | bitri | ⊢ ( ∀ 𝑤  ∈  𝑅 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  𝑤  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 72 | 63 71 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  0 )  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) |