Step |
Hyp |
Ref |
Expression |
1 |
|
minvec.x |
⊢ 𝑋 = ( Base ‘ 𝑈 ) |
2 |
|
minvec.m |
⊢ − = ( -g ‘ 𝑈 ) |
3 |
|
minvec.n |
⊢ 𝑁 = ( norm ‘ 𝑈 ) |
4 |
|
minvec.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂPreHil ) |
5 |
|
minvec.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) |
6 |
|
minvec.w |
⊢ ( 𝜑 → ( 𝑈 ↾s 𝑌 ) ∈ CMetSp ) |
7 |
|
minvec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minvec.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑈 ) |
9 |
|
minvec.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
10 |
|
minvec.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
11 |
|
minvec.d |
⊢ 𝐷 = ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) |
12 |
|
minvec.f |
⊢ 𝐹 = ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) |
13 |
|
minvec.p |
⊢ 𝑃 = ∪ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) |
14 |
|
minvec.t |
⊢ 𝑇 = ( ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minveclem4a |
⊢ ( 𝜑 → 𝑃 ∈ ( ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ∩ 𝑌 ) ) |
16 |
15
|
elin2d |
⊢ ( 𝜑 → 𝑃 ∈ 𝑌 ) |
17 |
11
|
oveqi |
⊢ ( 𝐴 𝐷 𝑃 ) = ( 𝐴 ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) 𝑃 ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minveclem4b |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
19 |
7 18
|
ovresd |
⊢ ( 𝜑 → ( 𝐴 ( ( dist ‘ 𝑈 ) ↾ ( 𝑋 × 𝑋 ) ) 𝑃 ) = ( 𝐴 ( dist ‘ 𝑈 ) 𝑃 ) ) |
20 |
17 19
|
eqtrid |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑃 ) = ( 𝐴 ( dist ‘ 𝑈 ) 𝑃 ) ) |
21 |
|
cphngp |
⊢ ( 𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmGrp ) |
23 |
|
eqid |
⊢ ( dist ‘ 𝑈 ) = ( dist ‘ 𝑈 ) |
24 |
3 1 2 23
|
ngpds |
⊢ ( ( 𝑈 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝐴 ( dist ‘ 𝑈 ) 𝑃 ) = ( 𝑁 ‘ ( 𝐴 − 𝑃 ) ) ) |
25 |
22 7 18 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( dist ‘ 𝑈 ) 𝑃 ) = ( 𝑁 ‘ ( 𝐴 − 𝑃 ) ) ) |
26 |
20 25
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑃 ) = ( 𝑁 ‘ ( 𝐴 − 𝑃 ) ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑃 ) = ( 𝑁 ‘ ( 𝐴 − 𝑃 ) ) ) |
28 |
|
ngpms |
⊢ ( 𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp ) |
29 |
1 11
|
msmet |
⊢ ( 𝑈 ∈ MetSp → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
30 |
22 28 29
|
3syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
31 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑃 ) ∈ ℝ ) |
32 |
30 7 18 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑃 ) ∈ ℝ ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑃 ) ∈ ℝ ) |
34 |
1 2 3 4 5 6 7 8 9 10
|
minveclem4c |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑆 ∈ ℝ ) |
36 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑈 ∈ NrmGrp ) |
37 |
|
cphlmod |
⊢ ( 𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod ) |
38 |
4 37
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑈 ∈ LMod ) |
40 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
41 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
42 |
1 41
|
lssss |
⊢ ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → 𝑌 ⊆ 𝑋 ) |
43 |
5 42
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
44 |
43
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
45 |
1 2
|
lmodvsubcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 − 𝑦 ) ∈ 𝑋 ) |
46 |
39 40 44 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 − 𝑦 ) ∈ 𝑋 ) |
47 |
1 3
|
nmcl |
⊢ ( ( 𝑈 ∈ NrmGrp ∧ ( 𝐴 − 𝑦 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ ℝ ) |
48 |
36 46 47
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ ℝ ) |
49 |
34 32
|
ltnled |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 𝑃 ) ↔ ¬ ( 𝐴 𝐷 𝑃 ) ≤ 𝑆 ) ) |
50 |
1 2 3 4 5 6 7 8 9 10 11 12
|
minveclem3b |
⊢ ( 𝜑 → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) |
51 |
|
fbsspw |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝐹 ⊆ 𝒫 𝑌 ) |
52 |
50 51
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝒫 𝑌 ) |
53 |
43
|
sspwd |
⊢ ( 𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋 ) |
54 |
52 53
|
sstrd |
⊢ ( 𝜑 → 𝐹 ⊆ 𝒫 𝑋 ) |
55 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
56 |
55
|
a1i |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
57 |
|
fbasweak |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
58 |
50 54 56 57
|
syl3anc |
⊢ ( 𝜑 → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
60 |
|
fgcl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
61 |
59 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
62 |
|
ssfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
63 |
59 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
64 |
32 34
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ∈ ℝ ) |
65 |
64
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ∈ ℝ ) |
66 |
65
|
resqcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) ∈ ℝ ) |
67 |
34
|
resqcld |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
68 |
66 67
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → ( ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ ) |
70 |
34 32 34
|
ltadd1d |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 𝑃 ) ↔ ( 𝑆 + 𝑆 ) < ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ) ) |
71 |
34
|
recnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
72 |
71
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝑆 ) = ( 𝑆 + 𝑆 ) ) |
73 |
72
|
breq1d |
⊢ ( 𝜑 → ( ( 2 · 𝑆 ) < ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ↔ ( 𝑆 + 𝑆 ) < ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ) ) |
74 |
|
2re |
⊢ 2 ∈ ℝ |
75 |
|
2pos |
⊢ 0 < 2 |
76 |
74 75
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
77 |
76
|
a1i |
⊢ ( 𝜑 → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
78 |
|
ltmuldiv2 |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑆 ) < ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ↔ 𝑆 < ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) ) |
79 |
34 64 77 78
|
syl3anc |
⊢ ( 𝜑 → ( ( 2 · 𝑆 ) < ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ↔ 𝑆 < ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) ) |
80 |
70 73 79
|
3bitr2d |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 𝑃 ) ↔ 𝑆 < ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) ) |
81 |
1 2 3 4 5 6 7 8 9
|
minveclem1 |
⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
82 |
81
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
83 |
81
|
simp1d |
⊢ ( 𝜑 → 𝑅 ⊆ ℝ ) |
84 |
81
|
simp2d |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
85 |
|
0re |
⊢ 0 ∈ ℝ |
86 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) |
87 |
86
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
88 |
87
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
89 |
85 82 88
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
90 |
85
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
91 |
|
infregelb |
⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ 0 ∈ ℝ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
92 |
83 84 89 90 91
|
syl31anc |
⊢ ( 𝜑 → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
93 |
82 92
|
mpbird |
⊢ ( 𝜑 → 0 ≤ inf ( 𝑅 , ℝ , < ) ) |
94 |
93 10
|
breqtrrdi |
⊢ ( 𝜑 → 0 ≤ 𝑆 ) |
95 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝑃 ) ) |
96 |
30 7 18 95
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 𝐷 𝑃 ) ) |
97 |
32 34 96 94
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ) |
98 |
|
divge0 |
⊢ ( ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) |
99 |
64 97 77 98
|
syl21anc |
⊢ ( 𝜑 → 0 ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) |
100 |
34 65 94 99
|
lt2sqd |
⊢ ( 𝜑 → ( 𝑆 < ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↔ ( 𝑆 ↑ 2 ) < ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) ) ) |
101 |
67 66
|
posdifd |
⊢ ( 𝜑 → ( ( 𝑆 ↑ 2 ) < ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) ↔ 0 < ( ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
102 |
80 100 101
|
3bitrd |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 𝑃 ) ↔ 0 < ( ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
103 |
102
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 0 < ( ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) |
104 |
69 103
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → ( ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ+ ) |
105 |
14 104
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝑇 ∈ ℝ+ ) |
106 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝑌 ∈ ( LSubSp ‘ 𝑈 ) ) |
107 |
|
rabexg |
⊢ ( 𝑌 ∈ ( LSubSp ‘ 𝑈 ) → { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ∈ V ) |
108 |
106 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ∈ V ) |
109 |
|
eqid |
⊢ ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) = ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) |
110 |
|
oveq2 |
⊢ ( 𝑟 = 𝑇 → ( ( 𝑆 ↑ 2 ) + 𝑟 ) = ( ( 𝑆 ↑ 2 ) + 𝑇 ) ) |
111 |
110
|
breq2d |
⊢ ( 𝑟 = 𝑇 → ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) ↔ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) ) ) |
112 |
111
|
rabbidv |
⊢ ( 𝑟 = 𝑇 → { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } = { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ) |
113 |
109 112
|
elrnmpt1s |
⊢ ( ( 𝑇 ∈ ℝ+ ∧ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ∈ V ) → { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ∈ ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) ) |
114 |
105 108 113
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ∈ ran ( 𝑟 ∈ ℝ+ ↦ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑟 ) } ) ) |
115 |
114 12
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ∈ 𝐹 ) |
116 |
63 115
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ∈ ( 𝑋 filGen 𝐹 ) ) |
117 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ⊆ 𝑋 |
118 |
117
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ⊆ 𝑋 ) |
119 |
14
|
oveq2i |
⊢ ( ( 𝑆 ↑ 2 ) + 𝑇 ) = ( ( 𝑆 ↑ 2 ) + ( ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) |
120 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
121 |
120
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
122 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ∈ ℝ ) |
123 |
122
|
resqcld |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) ∈ ℝ ) |
124 |
123
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) ∈ ℂ ) |
125 |
121 124
|
pncan3d |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑆 ↑ 2 ) + ( ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) = ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) ) |
126 |
119 125
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑆 ↑ 2 ) + 𝑇 ) = ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) ) |
127 |
126
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) ↔ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) ) ) |
128 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
129 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
130 |
44
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
131 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑦 ) ∈ ℝ ) |
132 |
128 129 130 131
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑦 ) ∈ ℝ ) |
133 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝑦 ) ) |
134 |
128 129 130 133
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → 0 ≤ ( 𝐴 𝐷 𝑦 ) ) |
135 |
99
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → 0 ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) |
136 |
132 122 134 135
|
le2sqd |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↔ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↑ 2 ) ) ) |
137 |
127 136
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) ↔ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) ) |
138 |
137
|
rabbidva |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } = { 𝑦 ∈ 𝑌 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) |
139 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝑌 ⊆ 𝑋 ) |
140 |
|
rabss2 |
⊢ ( 𝑌 ⊆ 𝑋 → { 𝑦 ∈ 𝑌 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ⊆ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) |
141 |
139 140
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑌 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ⊆ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) |
142 |
138 141
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ⊆ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) |
143 |
|
filss |
⊢ ( ( ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ∧ ( { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ∈ ( 𝑋 filGen 𝐹 ) ∧ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ⊆ 𝑋 ∧ { 𝑦 ∈ 𝑌 ∣ ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 𝑇 ) } ⊆ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) ) → { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ∈ ( 𝑋 filGen 𝐹 ) ) |
144 |
61 116 118 142 143
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ∈ ( 𝑋 filGen 𝐹 ) ) |
145 |
|
flimclsi |
⊢ ( { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ∈ ( 𝑋 filGen 𝐹 ) → ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) ) |
146 |
144 145
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) ) |
147 |
15
|
elin1d |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ) |
148 |
147
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝑃 ∈ ( 𝐽 fLim ( 𝑋 filGen 𝐹 ) ) ) |
149 |
146 148
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) ) |
150 |
|
ngpxms |
⊢ ( 𝑈 ∈ NrmGrp → 𝑈 ∈ ∞MetSp ) |
151 |
1 11
|
xmsxmet |
⊢ ( 𝑈 ∈ ∞MetSp → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
152 |
22 150 151
|
3syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
153 |
152
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
154 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝐴 ∈ 𝑋 ) |
155 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ∈ ℝ ) |
156 |
155
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ∈ ℝ* ) |
157 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
158 |
|
eqid |
⊢ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } = { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } |
159 |
157 158
|
blcld |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ∈ ℝ* ) → { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ∈ ( Clsd ‘ ( MetOpen ‘ 𝐷 ) ) ) |
160 |
153 154 156 159
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ∈ ( Clsd ‘ ( MetOpen ‘ 𝐷 ) ) ) |
161 |
8 1 11
|
xmstopn |
⊢ ( 𝑈 ∈ ∞MetSp → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |
162 |
22 150 161
|
3syl |
⊢ ( 𝜑 → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |
163 |
162
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |
164 |
163
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → ( Clsd ‘ 𝐽 ) = ( Clsd ‘ ( MetOpen ‘ 𝐷 ) ) ) |
165 |
160 164
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
166 |
|
cldcls |
⊢ ( { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) = { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) |
167 |
165 166
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → ( ( cls ‘ 𝐽 ) ‘ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) = { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) |
168 |
149 167
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → 𝑃 ∈ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ) |
169 |
|
oveq2 |
⊢ ( 𝑦 = 𝑃 → ( 𝐴 𝐷 𝑦 ) = ( 𝐴 𝐷 𝑃 ) ) |
170 |
169
|
breq1d |
⊢ ( 𝑦 = 𝑃 → ( ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ↔ ( 𝐴 𝐷 𝑃 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) ) |
171 |
170
|
elrab |
⊢ ( 𝑃 ∈ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } ↔ ( 𝑃 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝑃 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) ) |
172 |
171
|
simprbi |
⊢ ( 𝑃 ∈ { 𝑦 ∈ 𝑋 ∣ ( 𝐴 𝐷 𝑦 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) } → ( 𝐴 𝐷 𝑃 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) |
173 |
168 172
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → ( 𝐴 𝐷 𝑃 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) |
174 |
32 34 32
|
leadd2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑃 ) ≤ 𝑆 ↔ ( ( 𝐴 𝐷 𝑃 ) + ( 𝐴 𝐷 𝑃 ) ) ≤ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ) ) |
175 |
32
|
recnd |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑃 ) ∈ ℂ ) |
176 |
175
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( 𝐴 𝐷 𝑃 ) ) = ( ( 𝐴 𝐷 𝑃 ) + ( 𝐴 𝐷 𝑃 ) ) ) |
177 |
176
|
breq1d |
⊢ ( 𝜑 → ( ( 2 · ( 𝐴 𝐷 𝑃 ) ) ≤ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ↔ ( ( 𝐴 𝐷 𝑃 ) + ( 𝐴 𝐷 𝑃 ) ) ≤ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ) ) |
178 |
|
lemuldiv2 |
⊢ ( ( ( 𝐴 𝐷 𝑃 ) ∈ ℝ ∧ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · ( 𝐴 𝐷 𝑃 ) ) ≤ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ↔ ( 𝐴 𝐷 𝑃 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) ) |
179 |
76 178
|
mp3an3 |
⊢ ( ( ( 𝐴 𝐷 𝑃 ) ∈ ℝ ∧ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ∈ ℝ ) → ( ( 2 · ( 𝐴 𝐷 𝑃 ) ) ≤ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ↔ ( 𝐴 𝐷 𝑃 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) ) |
180 |
32 64 179
|
syl2anc |
⊢ ( 𝜑 → ( ( 2 · ( 𝐴 𝐷 𝑃 ) ) ≤ ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) ↔ ( 𝐴 𝐷 𝑃 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) ) |
181 |
174 177 180
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑃 ) ≤ 𝑆 ↔ ( 𝐴 𝐷 𝑃 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) ) |
182 |
181
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝐴 𝐷 𝑃 ) ≤ ( ( ( 𝐴 𝐷 𝑃 ) + 𝑆 ) / 2 ) ) → ( 𝐴 𝐷 𝑃 ) ≤ 𝑆 ) |
183 |
173 182
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 𝑃 ) ) → ( 𝐴 𝐷 𝑃 ) ≤ 𝑆 ) |
184 |
183
|
ex |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 𝑃 ) → ( 𝐴 𝐷 𝑃 ) ≤ 𝑆 ) ) |
185 |
49 184
|
sylbird |
⊢ ( 𝜑 → ( ¬ ( 𝐴 𝐷 𝑃 ) ≤ 𝑆 → ( 𝐴 𝐷 𝑃 ) ≤ 𝑆 ) ) |
186 |
185
|
pm2.18d |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑃 ) ≤ 𝑆 ) |
187 |
186
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑃 ) ≤ 𝑆 ) |
188 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑅 ⊆ ℝ ) |
189 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
190 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) |
191 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ V |
192 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
193 |
192
|
elrnmpt1 |
⊢ ( ( 𝑦 ∈ 𝑌 ∧ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ V ) → ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ) |
194 |
190 191 193
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ) |
195 |
194 9
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ 𝑅 ) |
196 |
|
infrelb |
⊢ ( ( 𝑅 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ∧ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ∈ 𝑅 ) → inf ( 𝑅 , ℝ , < ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
197 |
188 189 195 196
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → inf ( 𝑅 , ℝ , < ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
198 |
10 197
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑆 ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
199 |
33 35 48 187 198
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑃 ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
200 |
27 199
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 − 𝑃 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
201 |
200
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑃 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
202 |
|
oveq2 |
⊢ ( 𝑥 = 𝑃 → ( 𝐴 − 𝑥 ) = ( 𝐴 − 𝑃 ) ) |
203 |
202
|
fveq2d |
⊢ ( 𝑥 = 𝑃 → ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) = ( 𝑁 ‘ ( 𝐴 − 𝑃 ) ) ) |
204 |
203
|
breq1d |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝐴 − 𝑃 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ) |
205 |
204
|
ralbidv |
⊢ ( 𝑥 = 𝑃 → ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑃 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) ) |
206 |
205
|
rspcev |
⊢ ( ( 𝑃 ∈ 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑃 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |
207 |
16 201 206
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 − 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝑦 ) ) ) |