| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minvec.x | ⊢ 𝑋  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | minvec.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 3 |  | minvec.n | ⊢ 𝑁  =  ( norm ‘ 𝑈 ) | 
						
							| 4 |  | minvec.u | ⊢ ( 𝜑  →  𝑈  ∈  ℂPreHil ) | 
						
							| 5 |  | minvec.y | ⊢ ( 𝜑  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 6 |  | minvec.w | ⊢ ( 𝜑  →  ( 𝑈  ↾s  𝑌 )  ∈  CMetSp ) | 
						
							| 7 |  | minvec.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | minvec.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 9 |  | minvec.r | ⊢ 𝑅  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 10 |  | minvec.s | ⊢ 𝑆  =  inf ( 𝑅 ,  ℝ ,   <  ) | 
						
							| 11 |  | minvec.d | ⊢ 𝐷  =  ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 12 |  | minvec.f | ⊢ 𝐹  =  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 13 |  | minvec.p | ⊢ 𝑃  =  ∪  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 14 |  | minvec.t | ⊢ 𝑇  =  ( ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minveclem4a | ⊢ ( 𝜑  →  𝑃  ∈  ( ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ∩  𝑌 ) ) | 
						
							| 16 | 15 | elin2d | ⊢ ( 𝜑  →  𝑃  ∈  𝑌 ) | 
						
							| 17 | 11 | oveqi | ⊢ ( 𝐴 𝐷 𝑃 )  =  ( 𝐴 ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) 𝑃 ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minveclem4b | ⊢ ( 𝜑  →  𝑃  ∈  𝑋 ) | 
						
							| 19 | 7 18 | ovresd | ⊢ ( 𝜑  →  ( 𝐴 ( ( dist ‘ 𝑈 )  ↾  ( 𝑋  ×  𝑋 ) ) 𝑃 )  =  ( 𝐴 ( dist ‘ 𝑈 ) 𝑃 ) ) | 
						
							| 20 | 17 19 | eqtrid | ⊢ ( 𝜑  →  ( 𝐴 𝐷 𝑃 )  =  ( 𝐴 ( dist ‘ 𝑈 ) 𝑃 ) ) | 
						
							| 21 |  | cphngp | ⊢ ( 𝑈  ∈  ℂPreHil  →  𝑈  ∈  NrmGrp ) | 
						
							| 22 | 4 21 | syl | ⊢ ( 𝜑  →  𝑈  ∈  NrmGrp ) | 
						
							| 23 |  | eqid | ⊢ ( dist ‘ 𝑈 )  =  ( dist ‘ 𝑈 ) | 
						
							| 24 | 3 1 2 23 | ngpds | ⊢ ( ( 𝑈  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( 𝐴 ( dist ‘ 𝑈 ) 𝑃 )  =  ( 𝑁 ‘ ( 𝐴  −  𝑃 ) ) ) | 
						
							| 25 | 22 7 18 24 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 ( dist ‘ 𝑈 ) 𝑃 )  =  ( 𝑁 ‘ ( 𝐴  −  𝑃 ) ) ) | 
						
							| 26 | 20 25 | eqtrd | ⊢ ( 𝜑  →  ( 𝐴 𝐷 𝑃 )  =  ( 𝑁 ‘ ( 𝐴  −  𝑃 ) ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑃 )  =  ( 𝑁 ‘ ( 𝐴  −  𝑃 ) ) ) | 
						
							| 28 |  | ngpms | ⊢ ( 𝑈  ∈  NrmGrp  →  𝑈  ∈  MetSp ) | 
						
							| 29 | 1 11 | msmet | ⊢ ( 𝑈  ∈  MetSp  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 30 | 22 28 29 | 3syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 31 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( 𝐴 𝐷 𝑃 )  ∈  ℝ ) | 
						
							| 32 | 30 7 18 31 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 𝐷 𝑃 )  ∈  ℝ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑃 )  ∈  ℝ ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 | minveclem4c | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑆  ∈  ℝ ) | 
						
							| 36 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑈  ∈  NrmGrp ) | 
						
							| 37 |  | cphlmod | ⊢ ( 𝑈  ∈  ℂPreHil  →  𝑈  ∈  LMod ) | 
						
							| 38 | 4 37 | syl | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑈  ∈  LMod ) | 
						
							| 40 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 41 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 42 | 1 41 | lssss | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  𝑌  ⊆  𝑋 ) | 
						
							| 43 | 5 42 | syl | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 44 | 43 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑋 ) | 
						
							| 45 | 1 2 | lmodvsubcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴  −  𝑦 )  ∈  𝑋 ) | 
						
							| 46 | 39 40 44 45 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴  −  𝑦 )  ∈  𝑋 ) | 
						
							| 47 | 1 3 | nmcl | ⊢ ( ( 𝑈  ∈  NrmGrp  ∧  ( 𝐴  −  𝑦 )  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  ℝ ) | 
						
							| 48 | 36 46 47 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  ℝ ) | 
						
							| 49 | 34 32 | ltnled | ⊢ ( 𝜑  →  ( 𝑆  <  ( 𝐴 𝐷 𝑃 )  ↔  ¬  ( 𝐴 𝐷 𝑃 )  ≤  𝑆 ) ) | 
						
							| 50 | 1 2 3 4 5 6 7 8 9 10 11 12 | minveclem3b | ⊢ ( 𝜑  →  𝐹  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 51 |  | fbsspw | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑌 )  →  𝐹  ⊆  𝒫  𝑌 ) | 
						
							| 52 | 50 51 | syl | ⊢ ( 𝜑  →  𝐹  ⊆  𝒫  𝑌 ) | 
						
							| 53 | 43 | sspwd | ⊢ ( 𝜑  →  𝒫  𝑌  ⊆  𝒫  𝑋 ) | 
						
							| 54 | 52 53 | sstrd | ⊢ ( 𝜑  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 55 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 56 | 55 | a1i | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 57 |  | fbasweak | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹  ⊆  𝒫  𝑋  ∧  𝑋  ∈  V )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 58 | 50 54 56 57 | syl3anc | ⊢ ( 𝜑  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 60 |  | fgcl | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑋 filGen 𝐹 )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 61 | 59 60 | syl | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  ( 𝑋 filGen 𝐹 )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 62 |  | ssfg | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  𝐹  ⊆  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 63 | 59 62 | syl | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝐹  ⊆  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 64 | 32 34 | readdcld | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ∈  ℝ ) | 
						
							| 65 | 64 | rehalfcld | ⊢ ( 𝜑  →  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 )  ∈  ℝ ) | 
						
							| 66 | 65 | resqcld | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 67 | 34 | resqcld | ⊢ ( 𝜑  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 68 | 66 67 | resubcld | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  ( ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 70 | 34 32 34 | ltadd1d | ⊢ ( 𝜑  →  ( 𝑆  <  ( 𝐴 𝐷 𝑃 )  ↔  ( 𝑆  +  𝑆 )  <  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 ) ) ) | 
						
							| 71 | 34 | recnd | ⊢ ( 𝜑  →  𝑆  ∈  ℂ ) | 
						
							| 72 | 71 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  𝑆 )  =  ( 𝑆  +  𝑆 ) ) | 
						
							| 73 | 72 | breq1d | ⊢ ( 𝜑  →  ( ( 2  ·  𝑆 )  <  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ↔  ( 𝑆  +  𝑆 )  <  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 ) ) ) | 
						
							| 74 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 75 |  | 2pos | ⊢ 0  <  2 | 
						
							| 76 | 74 75 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 77 | 76 | a1i | ⊢ ( 𝜑  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 78 |  | ltmuldiv2 | ⊢ ( ( 𝑆  ∈  ℝ  ∧  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 2  ·  𝑆 )  <  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ↔  𝑆  <  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) ) | 
						
							| 79 | 34 64 77 78 | syl3anc | ⊢ ( 𝜑  →  ( ( 2  ·  𝑆 )  <  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ↔  𝑆  <  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) ) | 
						
							| 80 | 70 73 79 | 3bitr2d | ⊢ ( 𝜑  →  ( 𝑆  <  ( 𝐴 𝐷 𝑃 )  ↔  𝑆  <  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) ) | 
						
							| 81 | 1 2 3 4 5 6 7 8 9 | minveclem1 | ⊢ ( 𝜑  →  ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 82 | 81 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) | 
						
							| 83 | 81 | simp1d | ⊢ ( 𝜑  →  𝑅  ⊆  ℝ ) | 
						
							| 84 | 81 | simp2d | ⊢ ( 𝜑  →  𝑅  ≠  ∅ ) | 
						
							| 85 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 86 |  | breq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ≤  𝑤  ↔  0  ≤  𝑤 ) ) | 
						
							| 87 | 86 | ralbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 88 | 87 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 89 | 85 82 88 | sylancr | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 90 | 85 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 91 |  | infregelb | ⊢ ( ( ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 )  ∧  0  ∈  ℝ )  →  ( 0  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 92 | 83 84 89 90 91 | syl31anc | ⊢ ( 𝜑  →  ( 0  ≤  inf ( 𝑅 ,  ℝ ,   <  )  ↔  ∀ 𝑤  ∈  𝑅 0  ≤  𝑤 ) ) | 
						
							| 93 | 82 92 | mpbird | ⊢ ( 𝜑  →  0  ≤  inf ( 𝑅 ,  ℝ ,   <  ) ) | 
						
							| 94 | 93 10 | breqtrrdi | ⊢ ( 𝜑  →  0  ≤  𝑆 ) | 
						
							| 95 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  0  ≤  ( 𝐴 𝐷 𝑃 ) ) | 
						
							| 96 | 30 7 18 95 | syl3anc | ⊢ ( 𝜑  →  0  ≤  ( 𝐴 𝐷 𝑃 ) ) | 
						
							| 97 | 32 34 96 94 | addge0d | ⊢ ( 𝜑  →  0  ≤  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 ) ) | 
						
							| 98 |  | divge0 | ⊢ ( ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 ) )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  0  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) | 
						
							| 99 | 64 97 77 98 | syl21anc | ⊢ ( 𝜑  →  0  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) | 
						
							| 100 | 34 65 94 99 | lt2sqd | ⊢ ( 𝜑  →  ( 𝑆  <  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 )  ↔  ( 𝑆 ↑ 2 )  <  ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 ) ) ) | 
						
							| 101 | 67 66 | posdifd | ⊢ ( 𝜑  →  ( ( 𝑆 ↑ 2 )  <  ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  ↔  0  <  ( ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) ) | 
						
							| 102 | 80 100 101 | 3bitrd | ⊢ ( 𝜑  →  ( 𝑆  <  ( 𝐴 𝐷 𝑃 )  ↔  0  <  ( ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) ) | 
						
							| 103 | 102 | biimpa | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  0  <  ( ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) | 
						
							| 104 | 69 103 | elrpd | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  ( ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) )  ∈  ℝ+ ) | 
						
							| 105 | 14 104 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝑇  ∈  ℝ+ ) | 
						
							| 106 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝑌  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 107 |  | rabexg | ⊢ ( 𝑌  ∈  ( LSubSp ‘ 𝑈 )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  ∈  V ) | 
						
							| 108 | 106 107 | syl | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  ∈  V ) | 
						
							| 109 |  | eqid | ⊢ ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } )  =  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) | 
						
							| 110 |  | oveq2 | ⊢ ( 𝑟  =  𝑇  →  ( ( 𝑆 ↑ 2 )  +  𝑟 )  =  ( ( 𝑆 ↑ 2 )  +  𝑇 ) ) | 
						
							| 111 | 110 | breq2d | ⊢ ( 𝑟  =  𝑇  →  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 )  ↔  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) ) ) | 
						
							| 112 | 111 | rabbidv | ⊢ ( 𝑟  =  𝑇  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) }  =  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) } ) | 
						
							| 113 | 109 112 | elrnmpt1s | ⊢ ( ( 𝑇  ∈  ℝ+  ∧  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  ∈  V )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) ) | 
						
							| 114 | 105 108 113 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  ∈  ran  ( 𝑟  ∈  ℝ+  ↦  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑟 ) } ) ) | 
						
							| 115 | 114 12 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  ∈  𝐹 ) | 
						
							| 116 | 63 115 | sseldd | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  ∈  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 117 |  | ssrab2 | ⊢ { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ⊆  𝑋 | 
						
							| 118 | 117 | a1i | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ⊆  𝑋 ) | 
						
							| 119 | 14 | oveq2i | ⊢ ( ( 𝑆 ↑ 2 )  +  𝑇 )  =  ( ( 𝑆 ↑ 2 )  +  ( ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) ) | 
						
							| 120 | 67 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑆 ↑ 2 )  ∈  ℝ ) | 
						
							| 121 | 120 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑆 ↑ 2 )  ∈  ℂ ) | 
						
							| 122 | 65 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 )  ∈  ℝ ) | 
						
							| 123 | 122 | resqcld | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 124 | 123 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 125 | 121 124 | pncan3d | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝑆 ↑ 2 )  +  ( ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 )  −  ( 𝑆 ↑ 2 ) ) )  =  ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 ) ) | 
						
							| 126 | 119 125 | eqtrid | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝑆 ↑ 2 )  +  𝑇 )  =  ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 ) ) | 
						
							| 127 | 126 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 )  ↔  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 ) ) ) | 
						
							| 128 | 30 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 129 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 130 | 44 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑋 ) | 
						
							| 131 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴 𝐷 𝑦 )  ∈  ℝ ) | 
						
							| 132 | 128 129 130 131 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑦 )  ∈  ℝ ) | 
						
							| 133 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  0  ≤  ( 𝐴 𝐷 𝑦 ) ) | 
						
							| 134 | 128 129 130 133 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  0  ≤  ( 𝐴 𝐷 𝑦 ) ) | 
						
							| 135 | 99 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  0  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) | 
						
							| 136 | 132 122 134 135 | le2sqd | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 )  ↔  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ↑ 2 ) ) ) | 
						
							| 137 | 127 136 | bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 )  ↔  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) ) | 
						
							| 138 | 137 | rabbidva | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  =  { 𝑦  ∈  𝑌  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) | 
						
							| 139 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 140 |  | rabss2 | ⊢ ( 𝑌  ⊆  𝑋  →  { 𝑦  ∈  𝑌  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ⊆  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) | 
						
							| 141 | 139 140 | syl | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑌  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ⊆  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) | 
						
							| 142 | 138 141 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  ⊆  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) | 
						
							| 143 |  | filss | ⊢ ( ( ( 𝑋 filGen 𝐹 )  ∈  ( Fil ‘ 𝑋 )  ∧  ( { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  ∈  ( 𝑋 filGen 𝐹 )  ∧  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ⊆  𝑋  ∧  { 𝑦  ∈  𝑌  ∣  ( ( 𝐴 𝐷 𝑦 ) ↑ 2 )  ≤  ( ( 𝑆 ↑ 2 )  +  𝑇 ) }  ⊆  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) )  →  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ∈  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 144 | 61 116 118 142 143 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ∈  ( 𝑋 filGen 𝐹 ) ) | 
						
							| 145 |  | flimclsi | ⊢ ( { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ∈  ( 𝑋 filGen 𝐹 )  →  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ⊆  ( ( cls ‘ 𝐽 ) ‘ { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) ) | 
						
							| 146 | 144 145 | syl | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) )  ⊆  ( ( cls ‘ 𝐽 ) ‘ { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) ) | 
						
							| 147 | 15 | elin1d | ⊢ ( 𝜑  →  𝑃  ∈  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) ) | 
						
							| 148 | 147 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝑃  ∈  ( 𝐽  fLim  ( 𝑋 filGen 𝐹 ) ) ) | 
						
							| 149 | 146 148 | sseldd | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) ) | 
						
							| 150 |  | ngpxms | ⊢ ( 𝑈  ∈  NrmGrp  →  𝑈  ∈  ∞MetSp ) | 
						
							| 151 | 1 11 | xmsxmet | ⊢ ( 𝑈  ∈  ∞MetSp  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 152 | 22 150 151 | 3syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 153 | 152 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 154 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 155 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 )  ∈  ℝ ) | 
						
							| 156 | 155 | rexrd | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 )  ∈  ℝ* ) | 
						
							| 157 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 158 |  | eqid | ⊢ { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  =  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } | 
						
							| 159 | 157 158 | blcld | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 )  ∈  ℝ* )  →  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ∈  ( Clsd ‘ ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 160 | 153 154 156 159 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ∈  ( Clsd ‘ ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 161 | 8 1 11 | xmstopn | ⊢ ( 𝑈  ∈  ∞MetSp  →  𝐽  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 162 | 22 150 161 | 3syl | ⊢ ( 𝜑  →  𝐽  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 163 | 162 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝐽  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 164 | 163 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  ( Clsd ‘ 𝐽 )  =  ( Clsd ‘ ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 165 | 160 164 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 166 |  | cldcls | ⊢ ( { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ∈  ( Clsd ‘ 𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } )  =  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) | 
						
							| 167 | 165 166 | syl | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  ( ( cls ‘ 𝐽 ) ‘ { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } )  =  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) | 
						
							| 168 | 149 167 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  𝑃  ∈  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) } ) | 
						
							| 169 |  | oveq2 | ⊢ ( 𝑦  =  𝑃  →  ( 𝐴 𝐷 𝑦 )  =  ( 𝐴 𝐷 𝑃 ) ) | 
						
							| 170 | 169 | breq1d | ⊢ ( 𝑦  =  𝑃  →  ( ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 )  ↔  ( 𝐴 𝐷 𝑃 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) ) | 
						
							| 171 | 170 | elrab | ⊢ ( 𝑃  ∈  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  ↔  ( 𝑃  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) ) | 
						
							| 172 | 171 | simprbi | ⊢ ( 𝑃  ∈  { 𝑦  ∈  𝑋  ∣  ( 𝐴 𝐷 𝑦 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) }  →  ( 𝐴 𝐷 𝑃 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) | 
						
							| 173 | 168 172 | syl | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  ( 𝐴 𝐷 𝑃 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) | 
						
							| 174 | 32 34 32 | leadd2d | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝑃 )  ≤  𝑆  ↔  ( ( 𝐴 𝐷 𝑃 )  +  ( 𝐴 𝐷 𝑃 ) )  ≤  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 ) ) ) | 
						
							| 175 | 32 | recnd | ⊢ ( 𝜑  →  ( 𝐴 𝐷 𝑃 )  ∈  ℂ ) | 
						
							| 176 | 175 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  ( 𝐴 𝐷 𝑃 ) )  =  ( ( 𝐴 𝐷 𝑃 )  +  ( 𝐴 𝐷 𝑃 ) ) ) | 
						
							| 177 | 176 | breq1d | ⊢ ( 𝜑  →  ( ( 2  ·  ( 𝐴 𝐷 𝑃 ) )  ≤  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ↔  ( ( 𝐴 𝐷 𝑃 )  +  ( 𝐴 𝐷 𝑃 ) )  ≤  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 ) ) ) | 
						
							| 178 |  | lemuldiv2 | ⊢ ( ( ( 𝐴 𝐷 𝑃 )  ∈  ℝ  ∧  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 2  ·  ( 𝐴 𝐷 𝑃 ) )  ≤  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ↔  ( 𝐴 𝐷 𝑃 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) ) | 
						
							| 179 | 76 178 | mp3an3 | ⊢ ( ( ( 𝐴 𝐷 𝑃 )  ∈  ℝ  ∧  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ∈  ℝ )  →  ( ( 2  ·  ( 𝐴 𝐷 𝑃 ) )  ≤  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ↔  ( 𝐴 𝐷 𝑃 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) ) | 
						
							| 180 | 32 64 179 | syl2anc | ⊢ ( 𝜑  →  ( ( 2  ·  ( 𝐴 𝐷 𝑃 ) )  ≤  ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  ↔  ( 𝐴 𝐷 𝑃 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) ) | 
						
							| 181 | 174 177 180 | 3bitr2d | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝑃 )  ≤  𝑆  ↔  ( 𝐴 𝐷 𝑃 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) ) ) | 
						
							| 182 | 181 | biimpar | ⊢ ( ( 𝜑  ∧  ( 𝐴 𝐷 𝑃 )  ≤  ( ( ( 𝐴 𝐷 𝑃 )  +  𝑆 )  /  2 ) )  →  ( 𝐴 𝐷 𝑃 )  ≤  𝑆 ) | 
						
							| 183 | 173 182 | syldan | ⊢ ( ( 𝜑  ∧  𝑆  <  ( 𝐴 𝐷 𝑃 ) )  →  ( 𝐴 𝐷 𝑃 )  ≤  𝑆 ) | 
						
							| 184 | 183 | ex | ⊢ ( 𝜑  →  ( 𝑆  <  ( 𝐴 𝐷 𝑃 )  →  ( 𝐴 𝐷 𝑃 )  ≤  𝑆 ) ) | 
						
							| 185 | 49 184 | sylbird | ⊢ ( 𝜑  →  ( ¬  ( 𝐴 𝐷 𝑃 )  ≤  𝑆  →  ( 𝐴 𝐷 𝑃 )  ≤  𝑆 ) ) | 
						
							| 186 | 185 | pm2.18d | ⊢ ( 𝜑  →  ( 𝐴 𝐷 𝑃 )  ≤  𝑆 ) | 
						
							| 187 | 186 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑃 )  ≤  𝑆 ) | 
						
							| 188 | 83 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑅  ⊆  ℝ ) | 
						
							| 189 | 89 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤 ) | 
						
							| 190 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑌 ) | 
						
							| 191 |  | fvex | ⊢ ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  V | 
						
							| 192 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 193 | 192 | elrnmpt1 | ⊢ ( ( 𝑦  ∈  𝑌  ∧  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  V )  →  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 194 | 190 191 193 | sylancl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 195 | 194 9 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  𝑅 ) | 
						
							| 196 |  | infrelb | ⊢ ( ( 𝑅  ⊆  ℝ  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑥  ≤  𝑤  ∧  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ∈  𝑅 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 197 | 188 189 195 196 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  inf ( 𝑅 ,  ℝ ,   <  )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 198 | 10 197 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  𝑆  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 199 | 33 35 48 187 198 | letrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐴 𝐷 𝑃 )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 200 | 27 199 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑁 ‘ ( 𝐴  −  𝑃 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 201 | 200 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑃 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 202 |  | oveq2 | ⊢ ( 𝑥  =  𝑃  →  ( 𝐴  −  𝑥 )  =  ( 𝐴  −  𝑃 ) ) | 
						
							| 203 | 202 | fveq2d | ⊢ ( 𝑥  =  𝑃  →  ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  =  ( 𝑁 ‘ ( 𝐴  −  𝑃 ) ) ) | 
						
							| 204 | 203 | breq1d | ⊢ ( 𝑥  =  𝑃  →  ( ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ↔  ( 𝑁 ‘ ( 𝐴  −  𝑃 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 205 | 204 | ralbidv | ⊢ ( 𝑥  =  𝑃  →  ( ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑃 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) ) | 
						
							| 206 | 205 | rspcev | ⊢ ( ( 𝑃  ∈  𝑌  ∧  ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑃 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) )  →  ∃ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) | 
						
							| 207 | 16 201 206 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴  −  𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴  −  𝑦 ) ) ) |