Metamath Proof Explorer


Theorem filss

Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐵𝑋𝐴𝐵 ) ) → 𝐵𝐹 )

Proof

Step Hyp Ref Expression
1 isfil ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥𝐹 ) ) )
2 1 simprbi ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥𝐹 ) )
3 2 adantr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐵𝑋𝐴𝐵 ) ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥𝐹 ) )
4 elfvdm ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ dom Fil )
5 simp2 ( ( 𝐴𝐹𝐵𝑋𝐴𝐵 ) → 𝐵𝑋 )
6 elpw2g ( 𝑋 ∈ dom Fil → ( 𝐵 ∈ 𝒫 𝑋𝐵𝑋 ) )
7 6 biimpar ( ( 𝑋 ∈ dom Fil ∧ 𝐵𝑋 ) → 𝐵 ∈ 𝒫 𝑋 )
8 4 5 7 syl2an ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐵𝑋𝐴𝐵 ) ) → 𝐵 ∈ 𝒫 𝑋 )
9 simpr1 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐵𝑋𝐴𝐵 ) ) → 𝐴𝐹 )
10 simpr3 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐵𝑋𝐴𝐵 ) ) → 𝐴𝐵 )
11 9 10 elpwd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐵𝑋𝐴𝐵 ) ) → 𝐴 ∈ 𝒫 𝐵 )
12 inelcm ( ( 𝐴𝐹𝐴 ∈ 𝒫 𝐵 ) → ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ )
13 9 11 12 syl2anc ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐵𝑋𝐴𝐵 ) ) → ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ )
14 pweq ( 𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵 )
15 14 ineq2d ( 𝑥 = 𝐵 → ( 𝐹 ∩ 𝒫 𝑥 ) = ( 𝐹 ∩ 𝒫 𝐵 ) )
16 15 neeq1d ( 𝑥 = 𝐵 → ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ ↔ ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ ) )
17 eleq1 ( 𝑥 = 𝐵 → ( 𝑥𝐹𝐵𝐹 ) )
18 16 17 imbi12d ( 𝑥 = 𝐵 → ( ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥𝐹 ) ↔ ( ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ → 𝐵𝐹 ) ) )
19 18 rspccv ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥𝐹 ) → ( 𝐵 ∈ 𝒫 𝑋 → ( ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ → 𝐵𝐹 ) ) )
20 3 8 13 19 syl3c ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐵𝑋𝐴𝐵 ) ) → 𝐵𝐹 )