| Step |
Hyp |
Ref |
Expression |
| 1 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 2 |
|
fbasssin |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 3 |
1 2
|
syl3an1 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 4 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 5 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ⊆ 𝑋 ) |
| 6 |
4 5
|
sstrid |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) |
| 7 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ∧ 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) |
| 8 |
7
|
3exp2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 → ( 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) ) ) |
| 9 |
8
|
com23 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 → ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) ) ) |
| 10 |
9
|
imp |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) ) |
| 11 |
10
|
rexlimdv |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) |
| 12 |
6 11
|
syldan |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) |
| 14 |
3 13
|
mpd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) |