Metamath Proof Explorer


Theorem minveclem3a

Description: Lemma for minvec . D is a complete metric when restricted to Y . (Contributed by Mario Carneiro, 7-May-2014) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses minvec.x X=BaseU
minvec.m -˙=-U
minvec.n N=normU
minvec.u φUCPreHil
minvec.y φYLSubSpU
minvec.w φU𝑠YCMetSp
minvec.a φAX
minvec.j J=TopOpenU
minvec.r R=ranyYNA-˙y
minvec.s S=supR<
minvec.d D=distUX×X
Assertion minveclem3a φDY×YCMetY

Proof

Step Hyp Ref Expression
1 minvec.x X=BaseU
2 minvec.m -˙=-U
3 minvec.n N=normU
4 minvec.u φUCPreHil
5 minvec.y φYLSubSpU
6 minvec.w φU𝑠YCMetSp
7 minvec.a φAX
8 minvec.j J=TopOpenU
9 minvec.r R=ranyYNA-˙y
10 minvec.s S=supR<
11 minvec.d D=distUX×X
12 eqid BaseU𝑠Y=BaseU𝑠Y
13 eqid distU𝑠YBaseU𝑠Y×BaseU𝑠Y=distU𝑠YBaseU𝑠Y×BaseU𝑠Y
14 12 13 cmscmet U𝑠YCMetSpdistU𝑠YBaseU𝑠Y×BaseU𝑠YCMetBaseU𝑠Y
15 6 14 syl φdistU𝑠YBaseU𝑠Y×BaseU𝑠YCMetBaseU𝑠Y
16 11 reseq1i DY×Y=distUX×XY×Y
17 eqid LSubSpU=LSubSpU
18 1 17 lssss YLSubSpUYX
19 5 18 syl φYX
20 xpss12 YXYXY×YX×X
21 19 19 20 syl2anc φY×YX×X
22 21 resabs1d φdistUX×XY×Y=distUY×Y
23 eqid U𝑠Y=U𝑠Y
24 eqid distU=distU
25 23 24 ressds YLSubSpUdistU=distU𝑠Y
26 5 25 syl φdistU=distU𝑠Y
27 23 1 ressbas2 YXY=BaseU𝑠Y
28 19 27 syl φY=BaseU𝑠Y
29 28 sqxpeqd φY×Y=BaseU𝑠Y×BaseU𝑠Y
30 26 29 reseq12d φdistUY×Y=distU𝑠YBaseU𝑠Y×BaseU𝑠Y
31 22 30 eqtrd φdistUX×XY×Y=distU𝑠YBaseU𝑠Y×BaseU𝑠Y
32 16 31 eqtrid φDY×Y=distU𝑠YBaseU𝑠Y×BaseU𝑠Y
33 28 fveq2d φCMetY=CMetBaseU𝑠Y
34 15 32 33 3eltr4d φDY×YCMetY