Description: Lemma for minvec . D is a complete metric when restricted to Y . (Contributed by Mario Carneiro, 7-May-2014) (Revised by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | minvec.x | |
|
minvec.m | |
||
minvec.n | |
||
minvec.u | |
||
minvec.y | |
||
minvec.w | |
||
minvec.a | |
||
minvec.j | |
||
minvec.r | |
||
minvec.s | |
||
minvec.d | |
||
Assertion | minveclem3a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.x | |
|
2 | minvec.m | |
|
3 | minvec.n | |
|
4 | minvec.u | |
|
5 | minvec.y | |
|
6 | minvec.w | |
|
7 | minvec.a | |
|
8 | minvec.j | |
|
9 | minvec.r | |
|
10 | minvec.s | |
|
11 | minvec.d | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 12 13 | cmscmet | |
15 | 6 14 | syl | |
16 | 11 | reseq1i | |
17 | eqid | |
|
18 | 1 17 | lssss | |
19 | 5 18 | syl | |
20 | xpss12 | |
|
21 | 19 19 20 | syl2anc | |
22 | 21 | resabs1d | |
23 | eqid | |
|
24 | eqid | |
|
25 | 23 24 | ressds | |
26 | 5 25 | syl | |
27 | 23 1 | ressbas2 | |
28 | 19 27 | syl | |
29 | 28 | sqxpeqd | |
30 | 26 29 | reseq12d | |
31 | 22 30 | eqtrd | |
32 | 16 31 | eqtrid | |
33 | 28 | fveq2d | |
34 | 15 32 33 | 3eltr4d | |