Metamath Proof Explorer


Theorem clmmulg

Description: The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses clmmulg.1 V=BaseW
clmmulg.2 ˙=W
clmmulg.3 ·˙=W
Assertion clmmulg WCModABVA˙B=A·˙B

Proof

Step Hyp Ref Expression
1 clmmulg.1 V=BaseW
2 clmmulg.2 ˙=W
3 clmmulg.3 ·˙=W
4 oveq1 x=0x˙B=0˙B
5 oveq1 x=0x·˙B=0·˙B
6 4 5 eqeq12d x=0x˙B=x·˙B0˙B=0·˙B
7 oveq1 x=yx˙B=y˙B
8 oveq1 x=yx·˙B=y·˙B
9 7 8 eqeq12d x=yx˙B=x·˙By˙B=y·˙B
10 oveq1 x=y+1x˙B=y+1˙B
11 oveq1 x=y+1x·˙B=y+1·˙B
12 10 11 eqeq12d x=y+1x˙B=x·˙By+1˙B=y+1·˙B
13 oveq1 x=yx˙B=y˙B
14 oveq1 x=yx·˙B=y·˙B
15 13 14 eqeq12d x=yx˙B=x·˙By˙B=y·˙B
16 oveq1 x=Ax˙B=A˙B
17 oveq1 x=Ax·˙B=A·˙B
18 16 17 eqeq12d x=Ax˙B=x·˙BA˙B=A·˙B
19 eqid 0W=0W
20 1 19 2 mulg0 BV0˙B=0W
21 20 adantl WCModBV0˙B=0W
22 eqid ScalarW=ScalarW
23 1 22 3 19 clm0vs WCModBV0·˙B=0W
24 21 23 eqtr4d WCModBV0˙B=0·˙B
25 oveq1 y˙B=y·˙By˙B+WB=y·˙B+WB
26 clmgrp WCModWGrp
27 26 grpmndd WCModWMnd
28 27 ad2antrr WCModBVy0WMnd
29 simpr WCModBVy0y0
30 simplr WCModBVy0BV
31 eqid +W=+W
32 1 2 31 mulgnn0p1 WMndy0BVy+1˙B=y˙B+WB
33 28 29 30 32 syl3anc WCModBVy0y+1˙B=y˙B+WB
34 simpll WCModBVy0WCMod
35 eqid BaseScalarW=BaseScalarW
36 22 35 clmzss WCModBaseScalarW
37 36 ad2antrr WCModBVy0BaseScalarW
38 nn0z y0y
39 38 adantl WCModBVy0y
40 37 39 sseldd WCModBVy0yBaseScalarW
41 1zzd WCModBVy01
42 37 41 sseldd WCModBVy01BaseScalarW
43 1 22 3 35 31 clmvsdir WCModyBaseScalarW1BaseScalarWBVy+1·˙B=y·˙B+W1·˙B
44 34 40 42 30 43 syl13anc WCModBVy0y+1·˙B=y·˙B+W1·˙B
45 1 3 clmvs1 WCModBV1·˙B=B
46 45 adantr WCModBVy01·˙B=B
47 46 oveq2d WCModBVy0y·˙B+W1·˙B=y·˙B+WB
48 44 47 eqtrd WCModBVy0y+1·˙B=y·˙B+WB
49 33 48 eqeq12d WCModBVy0y+1˙B=y+1·˙By˙B+WB=y·˙B+WB
50 25 49 imbitrrid WCModBVy0y˙B=y·˙By+1˙B=y+1·˙B
51 50 ex WCModBVy0y˙B=y·˙By+1˙B=y+1·˙B
52 fveq2 y˙B=y·˙BinvgWy˙B=invgWy·˙B
53 26 ad2antrr WCModBVyWGrp
54 nnz yy
55 54 adantl WCModBVyy
56 simplr WCModBVyBV
57 eqid invgW=invgW
58 1 2 57 mulgneg WGrpyBVy˙B=invgWy˙B
59 53 55 56 58 syl3anc WCModBVyy˙B=invgWy˙B
60 simpll WCModBVyWCMod
61 36 ad2antrr WCModBVyBaseScalarW
62 61 55 sseldd WCModBVyyBaseScalarW
63 1 22 3 57 35 60 56 62 clmvsneg WCModBVyinvgWy·˙B=y·˙B
64 63 eqcomd WCModBVyy·˙B=invgWy·˙B
65 59 64 eqeq12d WCModBVyy˙B=y·˙BinvgWy˙B=invgWy·˙B
66 52 65 imbitrrid WCModBVyy˙B=y·˙By˙B=y·˙B
67 66 ex WCModBVyy˙B=y·˙By˙B=y·˙B
68 6 9 12 15 18 24 51 67 zindd WCModBVAA˙B=A·˙B
69 68 3impia WCModBVAA˙B=A·˙B
70 69 3com23 WCModABVA˙B=A·˙B