Description: The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clmmulg.1 | |
|
clmmulg.2 | |
||
clmmulg.3 | |
||
Assertion | clmmulg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmmulg.1 | |
|
2 | clmmulg.2 | |
|
3 | clmmulg.3 | |
|
4 | oveq1 | |
|
5 | oveq1 | |
|
6 | 4 5 | eqeq12d | |
7 | oveq1 | |
|
8 | oveq1 | |
|
9 | 7 8 | eqeq12d | |
10 | oveq1 | |
|
11 | oveq1 | |
|
12 | 10 11 | eqeq12d | |
13 | oveq1 | |
|
14 | oveq1 | |
|
15 | 13 14 | eqeq12d | |
16 | oveq1 | |
|
17 | oveq1 | |
|
18 | 16 17 | eqeq12d | |
19 | eqid | |
|
20 | 1 19 2 | mulg0 | |
21 | 20 | adantl | |
22 | eqid | |
|
23 | 1 22 3 19 | clm0vs | |
24 | 21 23 | eqtr4d | |
25 | oveq1 | |
|
26 | clmgrp | |
|
27 | 26 | grpmndd | |
28 | 27 | ad2antrr | |
29 | simpr | |
|
30 | simplr | |
|
31 | eqid | |
|
32 | 1 2 31 | mulgnn0p1 | |
33 | 28 29 30 32 | syl3anc | |
34 | simpll | |
|
35 | eqid | |
|
36 | 22 35 | clmzss | |
37 | 36 | ad2antrr | |
38 | nn0z | |
|
39 | 38 | adantl | |
40 | 37 39 | sseldd | |
41 | 1zzd | |
|
42 | 37 41 | sseldd | |
43 | 1 22 3 35 31 | clmvsdir | |
44 | 34 40 42 30 43 | syl13anc | |
45 | 1 3 | clmvs1 | |
46 | 45 | adantr | |
47 | 46 | oveq2d | |
48 | 44 47 | eqtrd | |
49 | 33 48 | eqeq12d | |
50 | 25 49 | imbitrrid | |
51 | 50 | ex | |
52 | fveq2 | |
|
53 | 26 | ad2antrr | |
54 | nnz | |
|
55 | 54 | adantl | |
56 | simplr | |
|
57 | eqid | |
|
58 | 1 2 57 | mulgneg | |
59 | 53 55 56 58 | syl3anc | |
60 | simpll | |
|
61 | 36 | ad2antrr | |
62 | 61 55 | sseldd | |
63 | 1 22 3 57 35 60 56 62 | clmvsneg | |
64 | 63 | eqcomd | |
65 | 59 64 | eqeq12d | |
66 | 52 65 | imbitrrid | |
67 | 66 | ex | |
68 | 6 9 12 15 18 24 51 67 | zindd | |
69 | 68 | 3impia | |
70 | 69 | 3com23 | |