Metamath Proof Explorer


Theorem pjth2

Description: Projection Theorem with abbreviations: A topologically closed subspace is a projection subspace. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Hypotheses pjth2.j J=TopOpenW
pjth2.l L=LSubSpW
pjth2.k K=projW
Assertion pjth2 WℂHilULUClsdJUdomK

Proof

Step Hyp Ref Expression
1 pjth2.j J=TopOpenW
2 pjth2.l L=LSubSpW
3 pjth2.k K=projW
4 simp2 WℂHilULUClsdJUL
5 eqid BaseW=BaseW
6 eqid LSSumW=LSSumW
7 eqid ocvW=ocvW
8 5 6 7 1 2 pjth WℂHilULUClsdJULSSumWocvWU=BaseW
9 hlphl WℂHilWPreHil
10 9 3ad2ant1 WℂHilULUClsdJWPreHil
11 5 2 7 6 3 pjdm2 WPreHilUdomKULULSSumWocvWU=BaseW
12 10 11 syl WℂHilULUClsdJUdomKULULSSumWocvWU=BaseW
13 4 8 12 mpbir2and WℂHilULUClsdJUdomK