Metamath Proof Explorer


Theorem pjth2

Description: Projection Theorem with abbreviations: A topologically closed subspace is a projection subspace. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Hypotheses pjth2.j J = TopOpen W
pjth2.l L = LSubSp W
pjth2.k K = proj W
Assertion pjth2 W ℂHil U L U Clsd J U dom K

Proof

Step Hyp Ref Expression
1 pjth2.j J = TopOpen W
2 pjth2.l L = LSubSp W
3 pjth2.k K = proj W
4 simp2 W ℂHil U L U Clsd J U L
5 eqid Base W = Base W
6 eqid LSSum W = LSSum W
7 eqid ocv W = ocv W
8 5 6 7 1 2 pjth W ℂHil U L U Clsd J U LSSum W ocv W U = Base W
9 hlphl W ℂHil W PreHil
10 9 3ad2ant1 W ℂHil U L U Clsd J W PreHil
11 5 2 7 6 3 pjdm2 W PreHil U dom K U L U LSSum W ocv W U = Base W
12 10 11 syl W ℂHil U L U Clsd J U dom K U L U LSSum W ocv W U = Base W
13 4 8 12 mpbir2and W ℂHil U L U Clsd J U dom K