Metamath Proof Explorer


Theorem clel4

Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypothesis clel4.1 BV
Assertion clel4 ABxx=BAx

Proof

Step Hyp Ref Expression
1 clel4.1 BV
2 clel4g BVABxx=BAx
3 1 2 ax-mp ABxx=BAx