Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clel4.1 | |- B e. _V  | 
					|
| Assertion | clel4 | |- ( A e. B <-> A. x ( x = B -> A e. x ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clel4.1 | |- B e. _V  | 
						|
| 2 | clel4g | |- ( B e. _V -> ( A e. B <-> A. x ( x = B -> A e. x ) ) )  | 
						|
| 3 | 1 2 | ax-mp | |- ( A e. B <-> A. x ( x = B -> A e. x ) )  |