Metamath Proof Explorer


Theorem clel5

Description: Alternate definition of class membership: a class X is an element of another class A iff there is an element of A equal to X . (Contributed by AV, 13-Nov-2020) Remove use of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 19-May-2023)

Ref Expression
Assertion clel5
|- ( X e. A <-> E. x e. A X = x )

Proof

Step Hyp Ref Expression
1 risset
 |-  ( X e. A <-> E. x e. A x = X )
2 eqcom
 |-  ( x = X <-> X = x )
3 2 rexbii
 |-  ( E. x e. A x = X <-> E. x e. A X = x )
4 1 3 bitri
 |-  ( X e. A <-> E. x e. A X = x )