Metamath Proof Explorer


Theorem clel4g

Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993) Strengthen from sethood hypothesis to sethood antecedent and avoid ax-12 . (Revised by BJ, 1-Sep-2024)

Ref Expression
Assertion clel4g BVABxx=BAx

Proof

Step Hyp Ref Expression
1 elisset BVxx=B
2 biimt xx=BABxx=BAB
3 1 2 syl BVABxx=BAB
4 19.23v xx=BABxx=BAB
5 3 4 bitr4di BVABxx=BAB
6 eleq2 x=BAxAB
7 6 bicomd x=BABAx
8 7 pm5.74i x=BABx=BAx
9 8 albii xx=BABxx=BAx
10 5 9 bitrdi BVABxx=BAx