Metamath Proof Explorer


Theorem clelsb1

Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 ). (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 14-Jun-2011)

Ref Expression
Assertion clelsb1 yxxAyA

Proof

Step Hyp Ref Expression
1 eleq1w x=wxAwA
2 eleq1w w=ywAyA
3 1 2 sbievw2 yxxAyA