Metamath Proof Explorer


Theorem cleq1lem

Description: Equality implies bijection. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion cleq1lem A=BACφBCφ

Proof

Step Hyp Ref Expression
1 sseq1 A=BACBC
2 1 anbi1d A=BACφBCφ