Metamath Proof Explorer


Theorem clintop

Description: A closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion clintop Could not format assertion : No typesetting found for |- ( .o. e. ( clIntOp ` M ) -> .o. : ( M X. M ) --> M ) with typecode |-

Proof

Step Hyp Ref Expression
1 elfvex Could not format ( .o. e. ( clIntOp ` M ) -> M e. _V ) : No typesetting found for |- ( .o. e. ( clIntOp ` M ) -> M e. _V ) with typecode |-
2 isclintop Could not format ( M e. _V -> ( .o. e. ( clIntOp ` M ) <-> .o. : ( M X. M ) --> M ) ) : No typesetting found for |- ( M e. _V -> ( .o. e. ( clIntOp ` M ) <-> .o. : ( M X. M ) --> M ) ) with typecode |-
3 2 biimpd Could not format ( M e. _V -> ( .o. e. ( clIntOp ` M ) -> .o. : ( M X. M ) --> M ) ) : No typesetting found for |- ( M e. _V -> ( .o. e. ( clIntOp ` M ) -> .o. : ( M X. M ) --> M ) ) with typecode |-
4 1 3 mpcom Could not format ( .o. e. ( clIntOp ` M ) -> .o. : ( M X. M ) --> M ) : No typesetting found for |- ( .o. e. ( clIntOp ` M ) -> .o. : ( M X. M ) --> M ) with typecode |-