Metamath Proof Explorer


Theorem isclintop

Description: The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009) (Revised by AV, 20-Jan-2020)

Ref Expression
Assertion isclintop Could not format assertion : No typesetting found for |- ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. : ( M X. M ) --> M ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 clintopval M V clIntOp M = M M × M
2 1 eleq2d Could not format ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. e. ( M ^m ( M X. M ) ) ) ) : No typesetting found for |- ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. e. ( M ^m ( M X. M ) ) ) ) with typecode |-
3 sqxpexg M V M × M V
4 elmapg Could not format ( ( M e. V /\ ( M X. M ) e. _V ) -> ( .o. e. ( M ^m ( M X. M ) ) <-> .o. : ( M X. M ) --> M ) ) : No typesetting found for |- ( ( M e. V /\ ( M X. M ) e. _V ) -> ( .o. e. ( M ^m ( M X. M ) ) <-> .o. : ( M X. M ) --> M ) ) with typecode |-
5 3 4 mpdan Could not format ( M e. V -> ( .o. e. ( M ^m ( M X. M ) ) <-> .o. : ( M X. M ) --> M ) ) : No typesetting found for |- ( M e. V -> ( .o. e. ( M ^m ( M X. M ) ) <-> .o. : ( M X. M ) --> M ) ) with typecode |-
6 2 5 bitrd Could not format ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. : ( M X. M ) --> M ) ) : No typesetting found for |- ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. : ( M X. M ) --> M ) ) with typecode |-