Metamath Proof Explorer


Theorem isclintop

Description: The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009) (Revised by AV, 20-Jan-2020)

Ref Expression
Assertion isclintop
|- ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. : ( M X. M ) --> M ) )

Proof

Step Hyp Ref Expression
1 clintopval
 |-  ( M e. V -> ( clIntOp ` M ) = ( M ^m ( M X. M ) ) )
2 1 eleq2d
 |-  ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. e. ( M ^m ( M X. M ) ) ) )
3 sqxpexg
 |-  ( M e. V -> ( M X. M ) e. _V )
4 elmapg
 |-  ( ( M e. V /\ ( M X. M ) e. _V ) -> ( .o. e. ( M ^m ( M X. M ) ) <-> .o. : ( M X. M ) --> M ) )
5 3 4 mpdan
 |-  ( M e. V -> ( .o. e. ( M ^m ( M X. M ) ) <-> .o. : ( M X. M ) --> M ) )
6 2 5 bitrd
 |-  ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. : ( M X. M ) --> M ) )