Description: The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009) (Revised by AV, 20-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | isclintop | |- ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. : ( M X. M ) --> M ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clintopval | |- ( M e. V -> ( clIntOp ` M ) = ( M ^m ( M X. M ) ) ) |
|
2 | 1 | eleq2d | |- ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. e. ( M ^m ( M X. M ) ) ) ) |
3 | sqxpexg | |- ( M e. V -> ( M X. M ) e. _V ) |
|
4 | elmapg | |- ( ( M e. V /\ ( M X. M ) e. _V ) -> ( .o. e. ( M ^m ( M X. M ) ) <-> .o. : ( M X. M ) --> M ) ) |
|
5 | 3 4 | mpdan | |- ( M e. V -> ( .o. e. ( M ^m ( M X. M ) ) <-> .o. : ( M X. M ) --> M ) ) |
6 | 2 5 | bitrd | |- ( M e. V -> ( .o. e. ( clIntOp ` M ) <-> .o. : ( M X. M ) --> M ) ) |