| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-clintop |  |-  clIntOp = ( m e. _V |-> ( m intOp m ) ) | 
						
							| 2 |  | id |  |-  ( m = M -> m = M ) | 
						
							| 3 | 2 2 | oveq12d |  |-  ( m = M -> ( m intOp m ) = ( M intOp M ) ) | 
						
							| 4 |  | intopval |  |-  ( ( M e. V /\ M e. V ) -> ( M intOp M ) = ( M ^m ( M X. M ) ) ) | 
						
							| 5 | 4 | anidms |  |-  ( M e. V -> ( M intOp M ) = ( M ^m ( M X. M ) ) ) | 
						
							| 6 | 3 5 | sylan9eqr |  |-  ( ( M e. V /\ m = M ) -> ( m intOp m ) = ( M ^m ( M X. M ) ) ) | 
						
							| 7 |  | elex |  |-  ( M e. V -> M e. _V ) | 
						
							| 8 |  | ovexd |  |-  ( M e. V -> ( M ^m ( M X. M ) ) e. _V ) | 
						
							| 9 | 1 6 7 8 | fvmptd2 |  |-  ( M e. V -> ( clIntOp ` M ) = ( M ^m ( M X. M ) ) ) |