Step |
Hyp |
Ref |
Expression |
1 |
|
df-clintop |
|- clIntOp = ( m e. _V |-> ( m intOp m ) ) |
2 |
|
id |
|- ( m = M -> m = M ) |
3 |
2 2
|
oveq12d |
|- ( m = M -> ( m intOp m ) = ( M intOp M ) ) |
4 |
|
intopval |
|- ( ( M e. V /\ M e. V ) -> ( M intOp M ) = ( M ^m ( M X. M ) ) ) |
5 |
4
|
anidms |
|- ( M e. V -> ( M intOp M ) = ( M ^m ( M X. M ) ) ) |
6 |
3 5
|
sylan9eqr |
|- ( ( M e. V /\ m = M ) -> ( m intOp m ) = ( M ^m ( M X. M ) ) ) |
7 |
|
elex |
|- ( M e. V -> M e. _V ) |
8 |
|
ovexd |
|- ( M e. V -> ( M ^m ( M X. M ) ) e. _V ) |
9 |
1 6 7 8
|
fvmptd2 |
|- ( M e. V -> ( clIntOp ` M ) = ( M ^m ( M X. M ) ) ) |