| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-intop |  |-  intOp = ( m e. _V , n e. _V |-> ( n ^m ( m X. m ) ) ) | 
						
							| 2 | 1 | a1i |  |-  ( ( M e. V /\ N e. W ) -> intOp = ( m e. _V , n e. _V |-> ( n ^m ( m X. m ) ) ) ) | 
						
							| 3 |  | simpr |  |-  ( ( m = M /\ n = N ) -> n = N ) | 
						
							| 4 |  | simpl |  |-  ( ( m = M /\ n = N ) -> m = M ) | 
						
							| 5 | 4 | sqxpeqd |  |-  ( ( m = M /\ n = N ) -> ( m X. m ) = ( M X. M ) ) | 
						
							| 6 | 3 5 | oveq12d |  |-  ( ( m = M /\ n = N ) -> ( n ^m ( m X. m ) ) = ( N ^m ( M X. M ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( M e. V /\ N e. W ) /\ ( m = M /\ n = N ) ) -> ( n ^m ( m X. m ) ) = ( N ^m ( M X. M ) ) ) | 
						
							| 8 |  | elex |  |-  ( M e. V -> M e. _V ) | 
						
							| 9 | 8 | adantr |  |-  ( ( M e. V /\ N e. W ) -> M e. _V ) | 
						
							| 10 |  | elex |  |-  ( N e. W -> N e. _V ) | 
						
							| 11 | 10 | adantl |  |-  ( ( M e. V /\ N e. W ) -> N e. _V ) | 
						
							| 12 |  | ovexd |  |-  ( ( M e. V /\ N e. W ) -> ( N ^m ( M X. M ) ) e. _V ) | 
						
							| 13 | 2 7 9 11 12 | ovmpod |  |-  ( ( M e. V /\ N e. W ) -> ( M intOp N ) = ( N ^m ( M X. M ) ) ) |