Step |
Hyp |
Ref |
Expression |
1 |
|
df-intop |
|- intOp = ( m e. _V , n e. _V |-> ( n ^m ( m X. m ) ) ) |
2 |
1
|
a1i |
|- ( ( M e. V /\ N e. W ) -> intOp = ( m e. _V , n e. _V |-> ( n ^m ( m X. m ) ) ) ) |
3 |
|
simpr |
|- ( ( m = M /\ n = N ) -> n = N ) |
4 |
|
simpl |
|- ( ( m = M /\ n = N ) -> m = M ) |
5 |
4
|
sqxpeqd |
|- ( ( m = M /\ n = N ) -> ( m X. m ) = ( M X. M ) ) |
6 |
3 5
|
oveq12d |
|- ( ( m = M /\ n = N ) -> ( n ^m ( m X. m ) ) = ( N ^m ( M X. M ) ) ) |
7 |
6
|
adantl |
|- ( ( ( M e. V /\ N e. W ) /\ ( m = M /\ n = N ) ) -> ( n ^m ( m X. m ) ) = ( N ^m ( M X. M ) ) ) |
8 |
|
elex |
|- ( M e. V -> M e. _V ) |
9 |
8
|
adantr |
|- ( ( M e. V /\ N e. W ) -> M e. _V ) |
10 |
|
elex |
|- ( N e. W -> N e. _V ) |
11 |
10
|
adantl |
|- ( ( M e. V /\ N e. W ) -> N e. _V ) |
12 |
|
ovexd |
|- ( ( M e. V /\ N e. W ) -> ( N ^m ( M X. M ) ) e. _V ) |
13 |
2 7 9 11 12
|
ovmpod |
|- ( ( M e. V /\ N e. W ) -> ( M intOp N ) = ( N ^m ( M X. M ) ) ) |