Metamath Proof Explorer


Theorem intop

Description: An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion intop
|- ( .o. e. ( M intOp N ) -> .o. : ( M X. M ) --> N )

Proof

Step Hyp Ref Expression
1 df-intop
 |-  intOp = ( m e. _V , n e. _V |-> ( n ^m ( m X. m ) ) )
2 1 elmpocl
 |-  ( .o. e. ( M intOp N ) -> ( M e. _V /\ N e. _V ) )
3 intopval
 |-  ( ( M e. _V /\ N e. _V ) -> ( M intOp N ) = ( N ^m ( M X. M ) ) )
4 3 eleq2d
 |-  ( ( M e. _V /\ N e. _V ) -> ( .o. e. ( M intOp N ) <-> .o. e. ( N ^m ( M X. M ) ) ) )
5 elmapi
 |-  ( .o. e. ( N ^m ( M X. M ) ) -> .o. : ( M X. M ) --> N )
6 4 5 syl6bi
 |-  ( ( M e. _V /\ N e. _V ) -> ( .o. e. ( M intOp N ) -> .o. : ( M X. M ) --> N ) )
7 2 6 mpcom
 |-  ( .o. e. ( M intOp N ) -> .o. : ( M X. M ) --> N )