Metamath Proof Explorer


Theorem intop

Description: An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion intop ( ∈ ( 𝑀 intOp 𝑁 ) → : ( 𝑀 × 𝑀 ) ⟶ 𝑁 )

Proof

Step Hyp Ref Expression
1 df-intop intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛m ( 𝑚 × 𝑚 ) ) )
2 1 elmpocl ( ∈ ( 𝑀 intOp 𝑁 ) → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) )
3 intopval ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( 𝑀 intOp 𝑁 ) = ( 𝑁m ( 𝑀 × 𝑀 ) ) )
4 3 eleq2d ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( ∈ ( 𝑀 intOp 𝑁 ) ↔ ∈ ( 𝑁m ( 𝑀 × 𝑀 ) ) ) )
5 elmapi ( ∈ ( 𝑁m ( 𝑀 × 𝑀 ) ) → : ( 𝑀 × 𝑀 ) ⟶ 𝑁 )
6 4 5 syl6bi ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( ∈ ( 𝑀 intOp 𝑁 ) → : ( 𝑀 × 𝑀 ) ⟶ 𝑁 ) )
7 2 6 mpcom ( ∈ ( 𝑀 intOp 𝑁 ) → : ( 𝑀 × 𝑀 ) ⟶ 𝑁 )