Description: An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | intop | ⊢ ( ⚬ ∈ ( 𝑀 intOp 𝑁 ) → ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-intop | ⊢ intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) ) | |
2 | 1 | elmpocl | ⊢ ( ⚬ ∈ ( 𝑀 intOp 𝑁 ) → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ) |
3 | intopval | ⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( 𝑀 intOp 𝑁 ) = ( 𝑁 ↑m ( 𝑀 × 𝑀 ) ) ) | |
4 | 3 | eleq2d | ⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( ⚬ ∈ ( 𝑀 intOp 𝑁 ) ↔ ⚬ ∈ ( 𝑁 ↑m ( 𝑀 × 𝑀 ) ) ) ) |
5 | elmapi | ⊢ ( ⚬ ∈ ( 𝑁 ↑m ( 𝑀 × 𝑀 ) ) → ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑁 ) | |
6 | 4 5 | syl6bi | ⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( ⚬ ∈ ( 𝑀 intOp 𝑁 ) → ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑁 ) ) |
7 | 2 6 | mpcom | ⊢ ( ⚬ ∈ ( 𝑀 intOp 𝑁 ) → ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑁 ) |