| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-clintop | ⊢  clIntOp   =  ( 𝑚  ∈  V  ↦  ( 𝑚  intOp  𝑚 ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑚  =  𝑀  →  𝑚  =  𝑀 ) | 
						
							| 3 | 2 2 | oveq12d | ⊢ ( 𝑚  =  𝑀  →  ( 𝑚  intOp  𝑚 )  =  ( 𝑀  intOp  𝑀 ) ) | 
						
							| 4 |  | intopval | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝑀  ∈  𝑉 )  →  ( 𝑀  intOp  𝑀 )  =  ( 𝑀  ↑m  ( 𝑀  ×  𝑀 ) ) ) | 
						
							| 5 | 4 | anidms | ⊢ ( 𝑀  ∈  𝑉  →  ( 𝑀  intOp  𝑀 )  =  ( 𝑀  ↑m  ( 𝑀  ×  𝑀 ) ) ) | 
						
							| 6 | 3 5 | sylan9eqr | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝑚  =  𝑀 )  →  ( 𝑚  intOp  𝑚 )  =  ( 𝑀  ↑m  ( 𝑀  ×  𝑀 ) ) ) | 
						
							| 7 |  | elex | ⊢ ( 𝑀  ∈  𝑉  →  𝑀  ∈  V ) | 
						
							| 8 |  | ovexd | ⊢ ( 𝑀  ∈  𝑉  →  ( 𝑀  ↑m  ( 𝑀  ×  𝑀 ) )  ∈  V ) | 
						
							| 9 | 1 6 7 8 | fvmptd2 | ⊢ ( 𝑀  ∈  𝑉  →  (  clIntOp  ‘ 𝑀 )  =  ( 𝑀  ↑m  ( 𝑀  ×  𝑀 ) ) ) |