| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-clintop |
⊢ clIntOp = ( 𝑚 ∈ V ↦ ( 𝑚 intOp 𝑚 ) ) |
| 2 |
|
id |
⊢ ( 𝑚 = 𝑀 → 𝑚 = 𝑀 ) |
| 3 |
2 2
|
oveq12d |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 intOp 𝑚 ) = ( 𝑀 intOp 𝑀 ) ) |
| 4 |
|
intopval |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ∈ 𝑉 ) → ( 𝑀 intOp 𝑀 ) = ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ) |
| 5 |
4
|
anidms |
⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 intOp 𝑀 ) = ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ) |
| 6 |
3 5
|
sylan9eqr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑚 = 𝑀 ) → ( 𝑚 intOp 𝑚 ) = ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ) |
| 7 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
| 8 |
|
ovexd |
⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∈ V ) |
| 9 |
1 6 7 8
|
fvmptd2 |
⊢ ( 𝑀 ∈ 𝑉 → ( clIntOp ‘ 𝑀 ) = ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ) |