Metamath Proof Explorer


Theorem clintopval

Description: The closed (internal binary) operations for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion clintopval ( 𝑀𝑉 → ( clIntOp ‘ 𝑀 ) = ( 𝑀m ( 𝑀 × 𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 df-clintop clIntOp = ( 𝑚 ∈ V ↦ ( 𝑚 intOp 𝑚 ) )
2 id ( 𝑚 = 𝑀𝑚 = 𝑀 )
3 2 2 oveq12d ( 𝑚 = 𝑀 → ( 𝑚 intOp 𝑚 ) = ( 𝑀 intOp 𝑀 ) )
4 intopval ( ( 𝑀𝑉𝑀𝑉 ) → ( 𝑀 intOp 𝑀 ) = ( 𝑀m ( 𝑀 × 𝑀 ) ) )
5 4 anidms ( 𝑀𝑉 → ( 𝑀 intOp 𝑀 ) = ( 𝑀m ( 𝑀 × 𝑀 ) ) )
6 3 5 sylan9eqr ( ( 𝑀𝑉𝑚 = 𝑀 ) → ( 𝑚 intOp 𝑚 ) = ( 𝑀m ( 𝑀 × 𝑀 ) ) )
7 elex ( 𝑀𝑉𝑀 ∈ V )
8 ovexd ( 𝑀𝑉 → ( 𝑀m ( 𝑀 × 𝑀 ) ) ∈ V )
9 1 6 7 8 fvmptd2 ( 𝑀𝑉 → ( clIntOp ‘ 𝑀 ) = ( 𝑀m ( 𝑀 × 𝑀 ) ) )