Step |
Hyp |
Ref |
Expression |
1 |
|
df-intop |
⊢ intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) ) ) |
3 |
|
simpr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) → 𝑛 = 𝑁 ) |
4 |
|
simpl |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) → 𝑚 = 𝑀 ) |
5 |
4
|
sqxpeqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) → ( 𝑚 × 𝑚 ) = ( 𝑀 × 𝑀 ) ) |
6 |
3 5
|
oveq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) → ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) = ( 𝑁 ↑m ( 𝑀 × 𝑀 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) ) → ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) = ( 𝑁 ↑m ( 𝑀 × 𝑀 ) ) ) |
8 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
9 |
8
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝑀 ∈ V ) |
10 |
|
elex |
⊢ ( 𝑁 ∈ 𝑊 → 𝑁 ∈ V ) |
11 |
10
|
adantl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝑁 ∈ V ) |
12 |
|
ovexd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝑁 ↑m ( 𝑀 × 𝑀 ) ) ∈ V ) |
13 |
2 7 9 11 12
|
ovmpod |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝑀 intOp 𝑁 ) = ( 𝑁 ↑m ( 𝑀 × 𝑀 ) ) ) |