| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-intop | ⊢  intOp   =  ( 𝑚  ∈  V ,  𝑛  ∈  V  ↦  ( 𝑛  ↑m  ( 𝑚  ×  𝑚 ) ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑊 )  →   intOp   =  ( 𝑚  ∈  V ,  𝑛  ∈  V  ↦  ( 𝑛  ↑m  ( 𝑚  ×  𝑚 ) ) ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑛  =  𝑁 )  →  𝑛  =  𝑁 ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑛  =  𝑁 )  →  𝑚  =  𝑀 ) | 
						
							| 5 | 4 | sqxpeqd | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑛  =  𝑁 )  →  ( 𝑚  ×  𝑚 )  =  ( 𝑀  ×  𝑀 ) ) | 
						
							| 6 | 3 5 | oveq12d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑛  =  𝑁 )  →  ( 𝑛  ↑m  ( 𝑚  ×  𝑚 ) )  =  ( 𝑁  ↑m  ( 𝑀  ×  𝑀 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑊 )  ∧  ( 𝑚  =  𝑀  ∧  𝑛  =  𝑁 ) )  →  ( 𝑛  ↑m  ( 𝑚  ×  𝑚 ) )  =  ( 𝑁  ↑m  ( 𝑀  ×  𝑀 ) ) ) | 
						
							| 8 |  | elex | ⊢ ( 𝑀  ∈  𝑉  →  𝑀  ∈  V ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑊 )  →  𝑀  ∈  V ) | 
						
							| 10 |  | elex | ⊢ ( 𝑁  ∈  𝑊  →  𝑁  ∈  V ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑊 )  →  𝑁  ∈  V ) | 
						
							| 12 |  | ovexd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑊 )  →  ( 𝑁  ↑m  ( 𝑀  ×  𝑀 ) )  ∈  V ) | 
						
							| 13 | 2 7 9 11 12 | ovmpod | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑊 )  →  ( 𝑀  intOp  𝑁 )  =  ( 𝑁  ↑m  ( 𝑀  ×  𝑀 ) ) ) |