Metamath Proof Explorer


Theorem intopval

Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion intopval ( ( 𝑀𝑉𝑁𝑊 ) → ( 𝑀 intOp 𝑁 ) = ( 𝑁m ( 𝑀 × 𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 df-intop intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛m ( 𝑚 × 𝑚 ) ) )
2 1 a1i ( ( 𝑀𝑉𝑁𝑊 ) → intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛m ( 𝑚 × 𝑚 ) ) ) )
3 simpr ( ( 𝑚 = 𝑀𝑛 = 𝑁 ) → 𝑛 = 𝑁 )
4 simpl ( ( 𝑚 = 𝑀𝑛 = 𝑁 ) → 𝑚 = 𝑀 )
5 4 sqxpeqd ( ( 𝑚 = 𝑀𝑛 = 𝑁 ) → ( 𝑚 × 𝑚 ) = ( 𝑀 × 𝑀 ) )
6 3 5 oveq12d ( ( 𝑚 = 𝑀𝑛 = 𝑁 ) → ( 𝑛m ( 𝑚 × 𝑚 ) ) = ( 𝑁m ( 𝑀 × 𝑀 ) ) )
7 6 adantl ( ( ( 𝑀𝑉𝑁𝑊 ) ∧ ( 𝑚 = 𝑀𝑛 = 𝑁 ) ) → ( 𝑛m ( 𝑚 × 𝑚 ) ) = ( 𝑁m ( 𝑀 × 𝑀 ) ) )
8 elex ( 𝑀𝑉𝑀 ∈ V )
9 8 adantr ( ( 𝑀𝑉𝑁𝑊 ) → 𝑀 ∈ V )
10 elex ( 𝑁𝑊𝑁 ∈ V )
11 10 adantl ( ( 𝑀𝑉𝑁𝑊 ) → 𝑁 ∈ V )
12 ovexd ( ( 𝑀𝑉𝑁𝑊 ) → ( 𝑁m ( 𝑀 × 𝑀 ) ) ∈ V )
13 2 7 9 11 12 ovmpod ( ( 𝑀𝑉𝑁𝑊 ) → ( 𝑀 intOp 𝑁 ) = ( 𝑁m ( 𝑀 × 𝑀 ) ) )