Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Magmas and internal binary operations (alternate approach)
Internal binary operations
intopval
Next ⟩
intop
Metamath Proof Explorer
Ascii
Unicode
Theorem
intopval
Description:
The internal (binary) operations for a set.
(Contributed by
AV
, 20-Jan-2020)
Ref
Expression
Assertion
intopval
⊢
M
∈
V
∧
N
∈
W
→
M
intOp
N
=
N
M
×
M
Proof
Step
Hyp
Ref
Expression
1
df-intop
⊢
intOp
=
m
∈
V
,
n
∈
V
⟼
n
m
×
m
2
1
a1i
⊢
M
∈
V
∧
N
∈
W
→
intOp
=
m
∈
V
,
n
∈
V
⟼
n
m
×
m
3
simpr
⊢
m
=
M
∧
n
=
N
→
n
=
N
4
simpl
⊢
m
=
M
∧
n
=
N
→
m
=
M
5
4
sqxpeqd
⊢
m
=
M
∧
n
=
N
→
m
×
m
=
M
×
M
6
3
5
oveq12d
⊢
m
=
M
∧
n
=
N
→
n
m
×
m
=
N
M
×
M
7
6
adantl
⊢
M
∈
V
∧
N
∈
W
∧
m
=
M
∧
n
=
N
→
n
m
×
m
=
N
M
×
M
8
elex
⊢
M
∈
V
→
M
∈
V
9
8
adantr
⊢
M
∈
V
∧
N
∈
W
→
M
∈
V
10
elex
⊢
N
∈
W
→
N
∈
V
11
10
adantl
⊢
M
∈
V
∧
N
∈
W
→
N
∈
V
12
ovexd
⊢
M
∈
V
∧
N
∈
W
→
N
M
×
M
∈
V
13
2
7
9
11
12
ovmpod
⊢
M
∈
V
∧
N
∈
W
→
M
intOp
N
=
N
M
×
M