Metamath Proof Explorer


Theorem intopval

Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion intopval MVNWMintOpN=NM×M

Proof

Step Hyp Ref Expression
1 df-intop intOp=mV,nVnm×m
2 1 a1i MVNWintOp=mV,nVnm×m
3 simpr m=Mn=Nn=N
4 simpl m=Mn=Nm=M
5 4 sqxpeqd m=Mn=Nm×m=M×M
6 3 5 oveq12d m=Mn=Nnm×m=NM×M
7 6 adantl MVNWm=Mn=Nnm×m=NM×M
8 elex MVMV
9 8 adantr MVNWMV
10 elex NWNV
11 10 adantl MVNWNV
12 ovexd MVNWNM×MV
13 2 7 9 11 12 ovmpod MVNWMintOpN=NM×M