Metamath Proof Explorer


Theorem intop

Description: An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion intop Could not format assertion : No typesetting found for |- ( .o. e. ( M intOp N ) -> .o. : ( M X. M ) --> N ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-intop intOp = m V , n V n m × m
2 1 elmpocl Could not format ( .o. e. ( M intOp N ) -> ( M e. _V /\ N e. _V ) ) : No typesetting found for |- ( .o. e. ( M intOp N ) -> ( M e. _V /\ N e. _V ) ) with typecode |-
3 intopval M V N V M intOp N = N M × M
4 3 eleq2d Could not format ( ( M e. _V /\ N e. _V ) -> ( .o. e. ( M intOp N ) <-> .o. e. ( N ^m ( M X. M ) ) ) ) : No typesetting found for |- ( ( M e. _V /\ N e. _V ) -> ( .o. e. ( M intOp N ) <-> .o. e. ( N ^m ( M X. M ) ) ) ) with typecode |-
5 elmapi Could not format ( .o. e. ( N ^m ( M X. M ) ) -> .o. : ( M X. M ) --> N ) : No typesetting found for |- ( .o. e. ( N ^m ( M X. M ) ) -> .o. : ( M X. M ) --> N ) with typecode |-
6 4 5 syl6bi Could not format ( ( M e. _V /\ N e. _V ) -> ( .o. e. ( M intOp N ) -> .o. : ( M X. M ) --> N ) ) : No typesetting found for |- ( ( M e. _V /\ N e. _V ) -> ( .o. e. ( M intOp N ) -> .o. : ( M X. M ) --> N ) ) with typecode |-
7 2 6 mpcom Could not format ( .o. e. ( M intOp N ) -> .o. : ( M X. M ) --> N ) : No typesetting found for |- ( .o. e. ( M intOp N ) -> .o. : ( M X. M ) --> N ) with typecode |-