Metamath Proof Explorer


Theorem clintopval

Description: The closed (internal binary) operations for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion clintopval M V clIntOp M = M M × M

Proof

Step Hyp Ref Expression
1 df-clintop clIntOp = m V m intOp m
2 id m = M m = M
3 2 2 oveq12d m = M m intOp m = M intOp M
4 intopval M V M V M intOp M = M M × M
5 4 anidms M V M intOp M = M M × M
6 3 5 sylan9eqr M V m = M m intOp m = M M × M
7 elex M V M V
8 ovexd M V M M × M V
9 1 6 7 8 fvmptd2 M V clIntOp M = M M × M