Step |
Hyp |
Ref |
Expression |
1 |
|
df-assintop |
⊢ assIntOp = ( 𝑚 ∈ V ↦ { 𝑜 ∈ ( clIntOp ‘ 𝑚 ) ∣ 𝑜 assLaw 𝑚 } ) |
2 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( clIntOp ‘ 𝑚 ) = ( clIntOp ‘ 𝑀 ) ) |
3 |
|
breq2 |
⊢ ( 𝑚 = 𝑀 → ( 𝑜 assLaw 𝑚 ↔ 𝑜 assLaw 𝑀 ) ) |
4 |
2 3
|
rabeqbidv |
⊢ ( 𝑚 = 𝑀 → { 𝑜 ∈ ( clIntOp ‘ 𝑚 ) ∣ 𝑜 assLaw 𝑚 } = { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ) |
5 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
6 |
|
fvex |
⊢ ( clIntOp ‘ 𝑀 ) ∈ V |
7 |
6
|
rabex |
⊢ { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ∈ V |
8 |
7
|
a1i |
⊢ ( 𝑀 ∈ 𝑉 → { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ∈ V ) |
9 |
1 4 5 8
|
fvmptd3 |
⊢ ( 𝑀 ∈ 𝑉 → ( assIntOp ‘ 𝑀 ) = { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ) |