Metamath Proof Explorer


Theorem assintopval

Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion assintopval ( 𝑀𝑉 → ( assIntOp ‘ 𝑀 ) = { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } )

Proof

Step Hyp Ref Expression
1 df-assintop assIntOp = ( 𝑚 ∈ V ↦ { 𝑜 ∈ ( clIntOp ‘ 𝑚 ) ∣ 𝑜 assLaw 𝑚 } )
2 fveq2 ( 𝑚 = 𝑀 → ( clIntOp ‘ 𝑚 ) = ( clIntOp ‘ 𝑀 ) )
3 breq2 ( 𝑚 = 𝑀 → ( 𝑜 assLaw 𝑚𝑜 assLaw 𝑀 ) )
4 2 3 rabeqbidv ( 𝑚 = 𝑀 → { 𝑜 ∈ ( clIntOp ‘ 𝑚 ) ∣ 𝑜 assLaw 𝑚 } = { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } )
5 elex ( 𝑀𝑉𝑀 ∈ V )
6 fvex ( clIntOp ‘ 𝑀 ) ∈ V
7 6 rabex { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ∈ V
8 7 a1i ( 𝑀𝑉 → { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ∈ V )
9 1 4 5 8 fvmptd3 ( 𝑀𝑉 → ( assIntOp ‘ 𝑀 ) = { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } )