| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-assintop | ⊢  assIntOp   =  ( 𝑚  ∈  V  ↦  { 𝑜  ∈  (  clIntOp  ‘ 𝑚 )  ∣  𝑜  assLaw  𝑚 } ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑚  =  𝑀  →  (  clIntOp  ‘ 𝑚 )  =  (  clIntOp  ‘ 𝑀 ) ) | 
						
							| 3 |  | breq2 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑜  assLaw  𝑚  ↔  𝑜  assLaw  𝑀 ) ) | 
						
							| 4 | 2 3 | rabeqbidv | ⊢ ( 𝑚  =  𝑀  →  { 𝑜  ∈  (  clIntOp  ‘ 𝑚 )  ∣  𝑜  assLaw  𝑚 }  =  { 𝑜  ∈  (  clIntOp  ‘ 𝑀 )  ∣  𝑜  assLaw  𝑀 } ) | 
						
							| 5 |  | elex | ⊢ ( 𝑀  ∈  𝑉  →  𝑀  ∈  V ) | 
						
							| 6 |  | fvex | ⊢ (  clIntOp  ‘ 𝑀 )  ∈  V | 
						
							| 7 | 6 | rabex | ⊢ { 𝑜  ∈  (  clIntOp  ‘ 𝑀 )  ∣  𝑜  assLaw  𝑀 }  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑀  ∈  𝑉  →  { 𝑜  ∈  (  clIntOp  ‘ 𝑀 )  ∣  𝑜  assLaw  𝑀 }  ∈  V ) | 
						
							| 9 | 1 4 5 8 | fvmptd3 | ⊢ ( 𝑀  ∈  𝑉  →  (  assIntOp  ‘ 𝑀 )  =  { 𝑜  ∈  (  clIntOp  ‘ 𝑀 )  ∣  𝑜  assLaw  𝑀 } ) |