Metamath Proof Explorer


Definition df-assintop

Description: Function mapping a set to the class of all associative (closed internal binary) operations for this set, see definition 5 in BourbakiAlg1 p. 4, where it is called "an associative law of composition". (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion df-assintop assIntOp = ( 𝑚 ∈ V ↦ { 𝑜 ∈ ( clIntOp ‘ 𝑚 ) ∣ 𝑜 assLaw 𝑚 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cassintop assIntOp
1 vm 𝑚
2 cvv V
3 vo 𝑜
4 cclintop clIntOp
5 1 cv 𝑚
6 5 4 cfv ( clIntOp ‘ 𝑚 )
7 3 cv 𝑜
8 casslaw assLaw
9 7 5 8 wbr 𝑜 assLaw 𝑚
10 9 3 6 crab { 𝑜 ∈ ( clIntOp ‘ 𝑚 ) ∣ 𝑜 assLaw 𝑚 }
11 1 2 10 cmpt ( 𝑚 ∈ V ↦ { 𝑜 ∈ ( clIntOp ‘ 𝑚 ) ∣ 𝑜 assLaw 𝑚 } )
12 0 11 wceq assIntOp = ( 𝑚 ∈ V ↦ { 𝑜 ∈ ( clIntOp ‘ 𝑚 ) ∣ 𝑜 assLaw 𝑚 } )