Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Magmas and internal binary operations (alternate approach)
Internal binary operations
df-assintop
Metamath Proof Explorer
Description: Function mapping a set to the class of all associative (closed internal
binary) operations for this set, see definition 5 in BourbakiAlg1
p. 4, where it is called "an associative law of composition".
(Contributed by AV , 20-Jan-2020)
Ref
Expression
Assertion
df-assintop
⊢ assIntOp = m ∈ V ⟼ o ∈ clIntOp ⁡ m | o assLaw m
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cassintop
class assIntOp
1
vm
setvar m
2
cvv
class V
3
vo
setvar o
4
cclintop
class clIntOp
5
1
cv
setvar m
6
5 4
cfv
class clIntOp ⁡ m
7
3
cv
setvar o
8
casslaw
class assLaw
9
7 5 8
wbr
wff o assLaw m
10
9 3 6
crab
class o ∈ clIntOp ⁡ m | o assLaw m
11
1 2 10
cmpt
class m ∈ V ⟼ o ∈ clIntOp ⁡ m | o assLaw m
12
0 11
wceq
wff assIntOp = m ∈ V ⟼ o ∈ clIntOp ⁡ m | o assLaw m