Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Alexander van der Vekens Magmas and internal binary operations (alternate approach) Internal binary operations df-assintop  
				
		 
		
			
		 
		Description:   Function mapping a set to the class of all associative (closed internal
       binary) operations for this set, see definition 5 in BourbakiAlg1 
       p. 4, where it is called "an associative law of composition".
       (Contributed by AV , 20-Jan-2020) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-assintop   ⊢   assIntOp  =    m  ∈  V  ⟼   o  ∈   clIntOp  ⁡  m   |  o  assLaw  m           
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cassintop  class  assIntOp    
						
							1 
								
							 
							vm  setvar  m    
						
							2 
								
							 
							cvv  class  V    
						
							3 
								
							 
							vo  setvar  o    
						
							4 
								
							 
							cclintop  class  clIntOp    
						
							5 
								1 
							 
							cv  setvar  m    
						
							6 
								5  4 
							 
							cfv  class   clIntOp  ⁡  m     
						
							7 
								3 
							 
							cv  setvar  o    
						
							8 
								
							 
							casslaw  class  assLaw    
						
							9 
								7  5  8 
							 
							wbr  wff  o  assLaw  m    
						
							10 
								9  3  6 
							 
							crab  class   o  ∈   clIntOp  ⁡  m   |  o  assLaw  m     
						
							11 
								1  2  10 
							 
							cmpt  class    m  ∈  V  ⟼   o  ∈   clIntOp  ⁡  m   |  o  assLaw  m        
						
							12 
								0  11 
							 
							wceq  wff   assIntOp  =    m  ∈  V  ⟼   o  ∈   clIntOp  ⁡  m   |  o  assLaw  m