Metamath Proof Explorer


Definition df-assintop

Description: Function mapping a set to the class of all associative (closed internal binary) operations for this set, see definition 5 in BourbakiAlg1 p. 4, where it is called "an associative law of composition". (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion df-assintop assIntOp=mVoclIntOpm|oassLawm

Detailed syntax breakdown

Step Hyp Ref Expression
0 cassintop classassIntOp
1 vm setvarm
2 cvv classV
3 vo setvaro
4 cclintop classclIntOp
5 1 cv setvarm
6 5 4 cfv classclIntOpm
7 3 cv setvaro
8 casslaw classassLaw
9 7 5 8 wbr wffoassLawm
10 9 3 6 crab classoclIntOpm|oassLawm
11 1 2 10 cmpt classmVoclIntOpm|oassLawm
12 0 11 wceq wffassIntOp=mVoclIntOpm|oassLawm