Description: Function mapping a set to the class of all associative (closed internal binary) operations for this set, see definition 5 in BourbakiAlg1 p. 4, where it is called "an associative law of composition". (Contributed by AV, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-assintop | |- assIntOp = ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cassintop | |- assIntOp | |
| 1 | vm | |- m | |
| 2 | cvv | |- _V | |
| 3 | vo | |- o | |
| 4 | cclintop | |- clIntOp | |
| 5 | 1 | cv | |- m | 
| 6 | 5 4 | cfv | |- ( clIntOp ` m ) | 
| 7 | 3 | cv | |- o | 
| 8 | casslaw | |- assLaw | |
| 9 | 7 5 8 | wbr | |- o assLaw m | 
| 10 | 9 3 6 | crab |  |-  { o e. ( clIntOp ` m ) | o assLaw m } | 
| 11 | 1 2 10 | cmpt |  |-  ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } ) | 
| 12 | 0 11 | wceq |  |-  assIntOp = ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } ) |