Metamath Proof Explorer


Definition df-assintop

Description: Function mapping a set to the class of all associative (closed internal binary) operations for this set, see definition 5 in BourbakiAlg1 p. 4, where it is called "an associative law of composition". (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion df-assintop
|- assIntOp = ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cassintop
 |-  assIntOp
1 vm
 |-  m
2 cvv
 |-  _V
3 vo
 |-  o
4 cclintop
 |-  clIntOp
5 1 cv
 |-  m
6 5 4 cfv
 |-  ( clIntOp ` m )
7 3 cv
 |-  o
8 casslaw
 |-  assLaw
9 7 5 8 wbr
 |-  o assLaw m
10 9 3 6 crab
 |-  { o e. ( clIntOp ` m ) | o assLaw m }
11 1 2 10 cmpt
 |-  ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } )
12 0 11 wceq
 |-  assIntOp = ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } )