Description: Function mapping a set to the class of all associative (closed internal binary) operations for this set, see definition 5 in BourbakiAlg1 p. 4, where it is called "an associative law of composition". (Contributed by AV, 20-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-assintop | |- assIntOp = ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cassintop | |- assIntOp |
|
1 | vm | |- m |
|
2 | cvv | |- _V |
|
3 | vo | |- o |
|
4 | cclintop | |- clIntOp |
|
5 | 1 | cv | |- m |
6 | 5 4 | cfv | |- ( clIntOp ` m ) |
7 | 3 | cv | |- o |
8 | casslaw | |- assLaw |
|
9 | 7 5 8 | wbr | |- o assLaw m |
10 | 9 3 6 | crab | |- { o e. ( clIntOp ` m ) | o assLaw m } |
11 | 1 2 10 | cmpt | |- ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } ) |
12 | 0 11 | wceq | |- assIntOp = ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } ) |