| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-assintop |
|- assIntOp = ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } ) |
| 2 |
|
fveq2 |
|- ( m = M -> ( clIntOp ` m ) = ( clIntOp ` M ) ) |
| 3 |
|
breq2 |
|- ( m = M -> ( o assLaw m <-> o assLaw M ) ) |
| 4 |
2 3
|
rabeqbidv |
|- ( m = M -> { o e. ( clIntOp ` m ) | o assLaw m } = { o e. ( clIntOp ` M ) | o assLaw M } ) |
| 5 |
|
elex |
|- ( M e. V -> M e. _V ) |
| 6 |
|
fvex |
|- ( clIntOp ` M ) e. _V |
| 7 |
6
|
rabex |
|- { o e. ( clIntOp ` M ) | o assLaw M } e. _V |
| 8 |
7
|
a1i |
|- ( M e. V -> { o e. ( clIntOp ` M ) | o assLaw M } e. _V ) |
| 9 |
1 4 5 8
|
fvmptd3 |
|- ( M e. V -> ( assIntOp ` M ) = { o e. ( clIntOp ` M ) | o assLaw M } ) |