Metamath Proof Explorer


Theorem assintopval

Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion assintopval
|- ( M e. V -> ( assIntOp ` M ) = { o e. ( clIntOp ` M ) | o assLaw M } )

Proof

Step Hyp Ref Expression
1 df-assintop
 |-  assIntOp = ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } )
2 fveq2
 |-  ( m = M -> ( clIntOp ` m ) = ( clIntOp ` M ) )
3 breq2
 |-  ( m = M -> ( o assLaw m <-> o assLaw M ) )
4 2 3 rabeqbidv
 |-  ( m = M -> { o e. ( clIntOp ` m ) | o assLaw m } = { o e. ( clIntOp ` M ) | o assLaw M } )
5 elex
 |-  ( M e. V -> M e. _V )
6 fvex
 |-  ( clIntOp ` M ) e. _V
7 6 rabex
 |-  { o e. ( clIntOp ` M ) | o assLaw M } e. _V
8 7 a1i
 |-  ( M e. V -> { o e. ( clIntOp ` M ) | o assLaw M } e. _V )
9 1 4 5 8 fvmptd3
 |-  ( M e. V -> ( assIntOp ` M ) = { o e. ( clIntOp ` M ) | o assLaw M } )