| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-assintop |  |-  assIntOp = ( m e. _V |-> { o e. ( clIntOp ` m ) | o assLaw m } ) | 
						
							| 2 |  | fveq2 |  |-  ( m = M -> ( clIntOp ` m ) = ( clIntOp ` M ) ) | 
						
							| 3 |  | breq2 |  |-  ( m = M -> ( o assLaw m <-> o assLaw M ) ) | 
						
							| 4 | 2 3 | rabeqbidv |  |-  ( m = M -> { o e. ( clIntOp ` m ) | o assLaw m } = { o e. ( clIntOp ` M ) | o assLaw M } ) | 
						
							| 5 |  | elex |  |-  ( M e. V -> M e. _V ) | 
						
							| 6 |  | fvex |  |-  ( clIntOp ` M ) e. _V | 
						
							| 7 | 6 | rabex |  |-  { o e. ( clIntOp ` M ) | o assLaw M } e. _V | 
						
							| 8 | 7 | a1i |  |-  ( M e. V -> { o e. ( clIntOp ` M ) | o assLaw M } e. _V ) | 
						
							| 9 | 1 4 5 8 | fvmptd3 |  |-  ( M e. V -> ( assIntOp ` M ) = { o e. ( clIntOp ` M ) | o assLaw M } ) |