Description: The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | assintopmap | |- ( M e. V -> ( assIntOp ` M ) = { o e. ( M ^m ( M X. M ) ) | o assLaw M } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assintopval | |- ( M e. V -> ( assIntOp ` M ) = { o e. ( clIntOp ` M ) | o assLaw M } ) |
|
2 | clintopval | |- ( M e. V -> ( clIntOp ` M ) = ( M ^m ( M X. M ) ) ) |
|
3 | 2 | rabeqdv | |- ( M e. V -> { o e. ( clIntOp ` M ) | o assLaw M } = { o e. ( M ^m ( M X. M ) ) | o assLaw M } ) |
4 | 1 3 | eqtrd | |- ( M e. V -> ( assIntOp ` M ) = { o e. ( M ^m ( M X. M ) ) | o assLaw M } ) |