Description: The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | assintopmap | |- ( M e. V -> ( assIntOp ` M ) = { o e. ( M ^m ( M X. M ) ) | o assLaw M } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | assintopval |  |-  ( M e. V -> ( assIntOp ` M ) = { o e. ( clIntOp ` M ) | o assLaw M } ) | |
| 2 | clintopval | |- ( M e. V -> ( clIntOp ` M ) = ( M ^m ( M X. M ) ) ) | |
| 3 | 2 | rabeqdv |  |-  ( M e. V -> { o e. ( clIntOp ` M ) | o assLaw M } = { o e. ( M ^m ( M X. M ) ) | o assLaw M } ) | 
| 4 | 1 3 | eqtrd |  |-  ( M e. V -> ( assIntOp ` M ) = { o e. ( M ^m ( M X. M ) ) | o assLaw M } ) |