Metamath Proof Explorer


Theorem assintopmap

Description: The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion assintopmap
|- ( M e. V -> ( assIntOp ` M ) = { o e. ( M ^m ( M X. M ) ) | o assLaw M } )

Proof

Step Hyp Ref Expression
1 assintopval
 |-  ( M e. V -> ( assIntOp ` M ) = { o e. ( clIntOp ` M ) | o assLaw M } )
2 clintopval
 |-  ( M e. V -> ( clIntOp ` M ) = ( M ^m ( M X. M ) ) )
3 2 rabeqdv
 |-  ( M e. V -> { o e. ( clIntOp ` M ) | o assLaw M } = { o e. ( M ^m ( M X. M ) ) | o assLaw M } )
4 1 3 eqtrd
 |-  ( M e. V -> ( assIntOp ` M ) = { o e. ( M ^m ( M X. M ) ) | o assLaw M } )