Metamath Proof Explorer


Theorem assintopmap

Description: The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion assintopmap M V assIntOp M = o M M × M | o assLaw M

Proof

Step Hyp Ref Expression
1 assintopval M V assIntOp M = o clIntOp M | o assLaw M
2 clintopval M V clIntOp M = M M × M
3 2 rabeqdv M V o clIntOp M | o assLaw M = o M M × M | o assLaw M
4 1 3 eqtrd M V assIntOp M = o M M × M | o assLaw M