Metamath Proof Explorer


Theorem assintopmap

Description: The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion assintopmap MVassIntOpM=oMM×M|oassLawM

Proof

Step Hyp Ref Expression
1 assintopval MVassIntOpM=oclIntOpM|oassLawM
2 clintopval MVclIntOpM=MM×M
3 2 rabeqdv MVoclIntOpM|oassLawM=oMM×M|oassLawM
4 1 3 eqtrd MVassIntOpM=oMM×M|oassLawM