Metamath Proof Explorer


Theorem clintop

Description: A closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion clintop ( ∈ ( clIntOp ‘ 𝑀 ) → : ( 𝑀 × 𝑀 ) ⟶ 𝑀 )

Proof

Step Hyp Ref Expression
1 elfvex ( ∈ ( clIntOp ‘ 𝑀 ) → 𝑀 ∈ V )
2 isclintop ( 𝑀 ∈ V → ( ∈ ( clIntOp ‘ 𝑀 ) ↔ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) )
3 2 biimpd ( 𝑀 ∈ V → ( ∈ ( clIntOp ‘ 𝑀 ) → : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) )
4 1 3 mpcom ( ∈ ( clIntOp ‘ 𝑀 ) → : ( 𝑀 × 𝑀 ) ⟶ 𝑀 )