Metamath Proof Explorer


Theorem assintop

Description: An associative (closed internal binary) operation for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion assintop ( ∈ ( assIntOp ‘ 𝑀 ) → ( : ( 𝑀 × 𝑀 ) ⟶ 𝑀 assLaw 𝑀 ) )

Proof

Step Hyp Ref Expression
1 elfvex ( ∈ ( assIntOp ‘ 𝑀 ) → 𝑀 ∈ V )
2 assintopmap ( 𝑀 ∈ V → ( assIntOp ‘ 𝑀 ) = { 𝑜 ∈ ( 𝑀m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } )
3 2 eleq2d ( 𝑀 ∈ V → ( ∈ ( assIntOp ‘ 𝑀 ) ↔ ∈ { 𝑜 ∈ ( 𝑀m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } ) )
4 breq1 ( 𝑜 = → ( 𝑜 assLaw 𝑀 assLaw 𝑀 ) )
5 4 elrab ( ∈ { 𝑜 ∈ ( 𝑀m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } ↔ ( ∈ ( 𝑀m ( 𝑀 × 𝑀 ) ) ∧ assLaw 𝑀 ) )
6 elmapi ( ∈ ( 𝑀m ( 𝑀 × 𝑀 ) ) → : ( 𝑀 × 𝑀 ) ⟶ 𝑀 )
7 6 anim1i ( ( ∈ ( 𝑀m ( 𝑀 × 𝑀 ) ) ∧ assLaw 𝑀 ) → ( : ( 𝑀 × 𝑀 ) ⟶ 𝑀 assLaw 𝑀 ) )
8 5 7 sylbi ( ∈ { 𝑜 ∈ ( 𝑀m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } → ( : ( 𝑀 × 𝑀 ) ⟶ 𝑀 assLaw 𝑀 ) )
9 3 8 syl6bi ( 𝑀 ∈ V → ( ∈ ( assIntOp ‘ 𝑀 ) → ( : ( 𝑀 × 𝑀 ) ⟶ 𝑀 assLaw 𝑀 ) ) )
10 1 9 mpcom ( ∈ ( assIntOp ‘ 𝑀 ) → ( : ( 𝑀 × 𝑀 ) ⟶ 𝑀 assLaw 𝑀 ) )