Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → 𝑀 ∈ V ) |
2 |
|
assintopmap |
⊢ ( 𝑀 ∈ V → ( assIntOp ‘ 𝑀 ) = { 𝑜 ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } ) |
3 |
2
|
eleq2d |
⊢ ( 𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) ↔ ⚬ ∈ { 𝑜 ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } ) ) |
4 |
|
breq1 |
⊢ ( 𝑜 = ⚬ → ( 𝑜 assLaw 𝑀 ↔ ⚬ assLaw 𝑀 ) ) |
5 |
4
|
elrab |
⊢ ( ⚬ ∈ { 𝑜 ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } ↔ ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ ⚬ assLaw 𝑀 ) ) |
6 |
|
elmapi |
⊢ ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) → ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) |
7 |
6
|
anim1i |
⊢ ( ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ ⚬ assLaw 𝑀 ) → ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ⚬ assLaw 𝑀 ) ) |
8 |
5 7
|
sylbi |
⊢ ( ⚬ ∈ { 𝑜 ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } → ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ⚬ assLaw 𝑀 ) ) |
9 |
3 8
|
syl6bi |
⊢ ( 𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ⚬ assLaw 𝑀 ) ) ) |
10 |
1 9
|
mpcom |
⊢ ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ⚬ assLaw 𝑀 ) ) |