Step |
Hyp |
Ref |
Expression |
1 |
|
assintopmap |
⊢ ( 𝑀 ∈ 𝑉 → ( assIntOp ‘ 𝑀 ) = { 𝑜 ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } ) |
2 |
1
|
eleq2d |
⊢ ( 𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) ↔ ⚬ ∈ { 𝑜 ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } ) ) |
3 |
|
breq1 |
⊢ ( 𝑜 = ⚬ → ( 𝑜 assLaw 𝑀 ↔ ⚬ assLaw 𝑀 ) ) |
4 |
3
|
elrab |
⊢ ( ⚬ ∈ { 𝑜 ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∣ 𝑜 assLaw 𝑀 } ↔ ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ ⚬ assLaw 𝑀 ) ) |
5 |
2 4
|
bitrdi |
⊢ ( 𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) ↔ ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ ⚬ assLaw 𝑀 ) ) ) |
6 |
|
elmapi |
⊢ ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) → ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) |
7 |
6
|
ad2antrl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ ⚬ assLaw 𝑀 ) ) → ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) |
8 |
|
isasslaw |
⊢ ( ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ 𝑀 ∈ 𝑉 ) → ( ⚬ assLaw 𝑀 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
9 |
8
|
biimpd |
⊢ ( ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ 𝑀 ∈ 𝑉 ) → ( ⚬ assLaw 𝑀 → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
10 |
9
|
impancom |
⊢ ( ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ ⚬ assLaw 𝑀 ) → ( 𝑀 ∈ 𝑉 → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
11 |
10
|
impcom |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ ⚬ assLaw 𝑀 ) ) → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
12 |
7 11
|
jca |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ ⚬ assLaw 𝑀 ) ) → ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
13 |
12
|
ex |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ⚬ ∈ ( 𝑀 ↑m ( 𝑀 × 𝑀 ) ) ∧ ⚬ assLaw 𝑀 ) → ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) ) |
14 |
5 13
|
sylbid |
⊢ ( 𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) ) |
15 |
|
isclintop |
⊢ ( 𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) ↔ ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) ) |
16 |
15
|
biimprcd |
⊢ ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 → ( 𝑀 ∈ 𝑉 → ⚬ ∈ ( clIntOp ‘ 𝑀 ) ) ) |
17 |
16
|
adantr |
⊢ ( ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) → ( 𝑀 ∈ 𝑉 → ⚬ ∈ ( clIntOp ‘ 𝑀 ) ) ) |
18 |
17
|
impcom |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) → ⚬ ∈ ( clIntOp ‘ 𝑀 ) ) |
19 |
|
sqxpexg |
⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 × 𝑀 ) ∈ V ) |
20 |
|
fex |
⊢ ( ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ( 𝑀 × 𝑀 ) ∈ V ) → ⚬ ∈ V ) |
21 |
19 20
|
sylan2 |
⊢ ( ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ 𝑀 ∈ 𝑉 ) → ⚬ ∈ V ) |
22 |
21
|
ancoms |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) → ⚬ ∈ V ) |
23 |
|
simpl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) → 𝑀 ∈ 𝑉 ) |
24 |
|
isasslaw |
⊢ ( ( ⚬ ∈ V ∧ 𝑀 ∈ 𝑉 ) → ( ⚬ assLaw 𝑀 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
25 |
24
|
bicomd |
⊢ ( ( ⚬ ∈ V ∧ 𝑀 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ⚬ assLaw 𝑀 ) ) |
26 |
22 23 25
|
syl2anc |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) → ( ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ⚬ assLaw 𝑀 ) ) |
27 |
26
|
biimpd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) → ( ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) → ⚬ assLaw 𝑀 ) ) |
28 |
27
|
impr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) → ⚬ assLaw 𝑀 ) |
29 |
|
assintopval |
⊢ ( 𝑀 ∈ 𝑉 → ( assIntOp ‘ 𝑀 ) = { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ) |
30 |
29
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) → ( assIntOp ‘ 𝑀 ) = { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ) |
31 |
30
|
eleq2d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) ↔ ⚬ ∈ { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ) ) |
32 |
3
|
elrab |
⊢ ( ⚬ ∈ { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ↔ ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) ∧ ⚬ assLaw 𝑀 ) ) |
33 |
31 32
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) ↔ ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) ∧ ⚬ assLaw 𝑀 ) ) ) |
34 |
18 28 33
|
mpbir2and |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) → ⚬ ∈ ( assIntOp ‘ 𝑀 ) ) |
35 |
34
|
ex |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) → ⚬ ∈ ( assIntOp ‘ 𝑀 ) ) ) |
36 |
14 35
|
impbid |
⊢ ( 𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) ↔ ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) ) |