Metamath Proof Explorer


Theorem clintopcllaw

Description: The closure law holds for a closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion clintopcllaw ( ∈ ( clIntOp ‘ 𝑀 ) → clLaw 𝑀 )

Proof

Step Hyp Ref Expression
1 clintop ( ∈ ( clIntOp ‘ 𝑀 ) → : ( 𝑀 × 𝑀 ) ⟶ 𝑀 )
2 ffnov ( : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ↔ ( Fn ( 𝑀 × 𝑀 ) ∧ ∀ 𝑥𝑀𝑦𝑀 ( 𝑥 𝑦 ) ∈ 𝑀 ) )
3 2 simprbi ( : ( 𝑀 × 𝑀 ) ⟶ 𝑀 → ∀ 𝑥𝑀𝑦𝑀 ( 𝑥 𝑦 ) ∈ 𝑀 )
4 1 3 syl ( ∈ ( clIntOp ‘ 𝑀 ) → ∀ 𝑥𝑀𝑦𝑀 ( 𝑥 𝑦 ) ∈ 𝑀 )
5 elfvex ( ∈ ( clIntOp ‘ 𝑀 ) → 𝑀 ∈ V )
6 iscllaw ( ( ∈ ( clIntOp ‘ 𝑀 ) ∧ 𝑀 ∈ V ) → ( clLaw 𝑀 ↔ ∀ 𝑥𝑀𝑦𝑀 ( 𝑥 𝑦 ) ∈ 𝑀 ) )
7 5 6 mpdan ( ∈ ( clIntOp ‘ 𝑀 ) → ( clLaw 𝑀 ↔ ∀ 𝑥𝑀𝑦𝑀 ( 𝑥 𝑦 ) ∈ 𝑀 ) )
8 4 7 mpbird ( ∈ ( clIntOp ‘ 𝑀 ) → clLaw 𝑀 )