Step |
Hyp |
Ref |
Expression |
1 |
|
clintop |
⊢ ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) → ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ) |
2 |
|
ffnov |
⊢ ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 ↔ ( ⚬ Fn ( 𝑀 × 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) ) |
3 |
2
|
simprbi |
⊢ ( ⚬ : ( 𝑀 × 𝑀 ) ⟶ 𝑀 → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) |
4 |
1 3
|
syl |
⊢ ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) |
5 |
|
elfvex |
⊢ ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) → 𝑀 ∈ V ) |
6 |
|
iscllaw |
⊢ ( ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) ∧ 𝑀 ∈ V ) → ( ⚬ clLaw 𝑀 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) ) |
7 |
5 6
|
mpdan |
⊢ ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) → ( ⚬ clLaw 𝑀 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) ) |
8 |
4 7
|
mpbird |
⊢ ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) → ⚬ clLaw 𝑀 ) |