| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clintop | ⊢ (  ⚬   ∈  (  clIntOp  ‘ 𝑀 )  →   ⚬  : ( 𝑀  ×  𝑀 ) ⟶ 𝑀 ) | 
						
							| 2 |  | ffnov | ⊢ (  ⚬  : ( 𝑀  ×  𝑀 ) ⟶ 𝑀  ↔  (  ⚬   Fn  ( 𝑀  ×  𝑀 )  ∧  ∀ 𝑥  ∈  𝑀 ∀ 𝑦  ∈  𝑀 ( 𝑥  ⚬  𝑦 )  ∈  𝑀 ) ) | 
						
							| 3 | 2 | simprbi | ⊢ (  ⚬  : ( 𝑀  ×  𝑀 ) ⟶ 𝑀  →  ∀ 𝑥  ∈  𝑀 ∀ 𝑦  ∈  𝑀 ( 𝑥  ⚬  𝑦 )  ∈  𝑀 ) | 
						
							| 4 | 1 3 | syl | ⊢ (  ⚬   ∈  (  clIntOp  ‘ 𝑀 )  →  ∀ 𝑥  ∈  𝑀 ∀ 𝑦  ∈  𝑀 ( 𝑥  ⚬  𝑦 )  ∈  𝑀 ) | 
						
							| 5 |  | elfvex | ⊢ (  ⚬   ∈  (  clIntOp  ‘ 𝑀 )  →  𝑀  ∈  V ) | 
						
							| 6 |  | iscllaw | ⊢ ( (  ⚬   ∈  (  clIntOp  ‘ 𝑀 )  ∧  𝑀  ∈  V )  →  (  ⚬   clLaw  𝑀  ↔  ∀ 𝑥  ∈  𝑀 ∀ 𝑦  ∈  𝑀 ( 𝑥  ⚬  𝑦 )  ∈  𝑀 ) ) | 
						
							| 7 | 5 6 | mpdan | ⊢ (  ⚬   ∈  (  clIntOp  ‘ 𝑀 )  →  (  ⚬   clLaw  𝑀  ↔  ∀ 𝑥  ∈  𝑀 ∀ 𝑦  ∈  𝑀 ( 𝑥  ⚬  𝑦 )  ∈  𝑀 ) ) | 
						
							| 8 | 4 7 | mpbird | ⊢ (  ⚬   ∈  (  clIntOp  ‘ 𝑀 )  →   ⚬   clLaw  𝑀 ) |