| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑜 = ⚬ ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 ) |
| 2 |
|
oveq |
⊢ ( 𝑜 = ⚬ → ( 𝑥 𝑜 𝑦 ) = ( 𝑥 ⚬ 𝑦 ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑜 = ⚬ ∧ 𝑚 = 𝑀 ) → ( 𝑥 𝑜 𝑦 ) = ( 𝑥 ⚬ 𝑦 ) ) |
| 4 |
3 1
|
eleq12d |
⊢ ( ( 𝑜 = ⚬ ∧ 𝑚 = 𝑀 ) → ( ( 𝑥 𝑜 𝑦 ) ∈ 𝑚 ↔ ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) ) |
| 5 |
1 4
|
raleqbidv |
⊢ ( ( 𝑜 = ⚬ ∧ 𝑚 = 𝑀 ) → ( ∀ 𝑦 ∈ 𝑚 ( 𝑥 𝑜 𝑦 ) ∈ 𝑚 ↔ ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) ) |
| 6 |
1 5
|
raleqbidv |
⊢ ( ( 𝑜 = ⚬ ∧ 𝑚 = 𝑀 ) → ( ∀ 𝑥 ∈ 𝑚 ∀ 𝑦 ∈ 𝑚 ( 𝑥 𝑜 𝑦 ) ∈ 𝑚 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) ) |
| 7 |
|
df-cllaw |
⊢ clLaw = { 〈 𝑜 , 𝑚 〉 ∣ ∀ 𝑥 ∈ 𝑚 ∀ 𝑦 ∈ 𝑚 ( 𝑥 𝑜 𝑦 ) ∈ 𝑚 } |
| 8 |
6 7
|
brabga |
⊢ ( ( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ) → ( ⚬ clLaw 𝑀 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) ) |