Metamath Proof Explorer


Theorem iscllaw

Description: The predicate "is a closed operation". (Contributed by AV, 13-Jan-2020)

Ref Expression
Assertion iscllaw ( ( 𝑉𝑀𝑊 ) → ( clLaw 𝑀 ↔ ∀ 𝑥𝑀𝑦𝑀 ( 𝑥 𝑦 ) ∈ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑜 = 𝑚 = 𝑀 ) → 𝑚 = 𝑀 )
2 oveq ( 𝑜 = → ( 𝑥 𝑜 𝑦 ) = ( 𝑥 𝑦 ) )
3 2 adantr ( ( 𝑜 = 𝑚 = 𝑀 ) → ( 𝑥 𝑜 𝑦 ) = ( 𝑥 𝑦 ) )
4 3 1 eleq12d ( ( 𝑜 = 𝑚 = 𝑀 ) → ( ( 𝑥 𝑜 𝑦 ) ∈ 𝑚 ↔ ( 𝑥 𝑦 ) ∈ 𝑀 ) )
5 1 4 raleqbidv ( ( 𝑜 = 𝑚 = 𝑀 ) → ( ∀ 𝑦𝑚 ( 𝑥 𝑜 𝑦 ) ∈ 𝑚 ↔ ∀ 𝑦𝑀 ( 𝑥 𝑦 ) ∈ 𝑀 ) )
6 1 5 raleqbidv ( ( 𝑜 = 𝑚 = 𝑀 ) → ( ∀ 𝑥𝑚𝑦𝑚 ( 𝑥 𝑜 𝑦 ) ∈ 𝑚 ↔ ∀ 𝑥𝑀𝑦𝑀 ( 𝑥 𝑦 ) ∈ 𝑀 ) )
7 df-cllaw clLaw = { ⟨ 𝑜 , 𝑚 ⟩ ∣ ∀ 𝑥𝑚𝑦𝑚 ( 𝑥 𝑜 𝑦 ) ∈ 𝑚 }
8 6 7 brabga ( ( 𝑉𝑀𝑊 ) → ( clLaw 𝑀 ↔ ∀ 𝑥𝑀𝑦𝑀 ( 𝑥 𝑦 ) ∈ 𝑀 ) )