Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → 𝑀 ∈ V ) |
2 |
|
assintopval |
⊢ ( 𝑀 ∈ V → ( assIntOp ‘ 𝑀 ) = { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ) |
3 |
2
|
eleq2d |
⊢ ( 𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) ↔ ⚬ ∈ { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ) ) |
4 |
|
breq1 |
⊢ ( 𝑜 = ⚬ → ( 𝑜 assLaw 𝑀 ↔ ⚬ assLaw 𝑀 ) ) |
5 |
4
|
elrab |
⊢ ( ⚬ ∈ { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ↔ ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) ∧ ⚬ assLaw 𝑀 ) ) |
6 |
3 5
|
bitrdi |
⊢ ( 𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) ↔ ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) ∧ ⚬ assLaw 𝑀 ) ) ) |
7 |
|
clintopcllaw |
⊢ ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) → ⚬ clLaw 𝑀 ) |
8 |
7
|
adantr |
⊢ ( ( ⚬ ∈ ( clIntOp ‘ 𝑀 ) ∧ ⚬ assLaw 𝑀 ) → ⚬ clLaw 𝑀 ) |
9 |
6 8
|
syl6bi |
⊢ ( 𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → ⚬ clLaw 𝑀 ) ) |
10 |
1 9
|
mpcom |
⊢ ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → ⚬ clLaw 𝑀 ) |