| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvex | ⊢ (  ⚬   ∈  (  assIntOp  ‘ 𝑀 )  →  𝑀  ∈  V ) | 
						
							| 2 |  | assintopval | ⊢ ( 𝑀  ∈  V  →  (  assIntOp  ‘ 𝑀 )  =  { 𝑜  ∈  (  clIntOp  ‘ 𝑀 )  ∣  𝑜  assLaw  𝑀 } ) | 
						
							| 3 | 2 | eleq2d | ⊢ ( 𝑀  ∈  V  →  (  ⚬   ∈  (  assIntOp  ‘ 𝑀 )  ↔   ⚬   ∈  { 𝑜  ∈  (  clIntOp  ‘ 𝑀 )  ∣  𝑜  assLaw  𝑀 } ) ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑜  =   ⚬   →  ( 𝑜  assLaw  𝑀  ↔   ⚬   assLaw  𝑀 ) ) | 
						
							| 5 | 4 | elrab | ⊢ (  ⚬   ∈  { 𝑜  ∈  (  clIntOp  ‘ 𝑀 )  ∣  𝑜  assLaw  𝑀 }  ↔  (  ⚬   ∈  (  clIntOp  ‘ 𝑀 )  ∧   ⚬   assLaw  𝑀 ) ) | 
						
							| 6 | 3 5 | bitrdi | ⊢ ( 𝑀  ∈  V  →  (  ⚬   ∈  (  assIntOp  ‘ 𝑀 )  ↔  (  ⚬   ∈  (  clIntOp  ‘ 𝑀 )  ∧   ⚬   assLaw  𝑀 ) ) ) | 
						
							| 7 |  | clintopcllaw | ⊢ (  ⚬   ∈  (  clIntOp  ‘ 𝑀 )  →   ⚬   clLaw  𝑀 ) | 
						
							| 8 | 7 | adantr | ⊢ ( (  ⚬   ∈  (  clIntOp  ‘ 𝑀 )  ∧   ⚬   assLaw  𝑀 )  →   ⚬   clLaw  𝑀 ) | 
						
							| 9 | 6 8 | biimtrdi | ⊢ ( 𝑀  ∈  V  →  (  ⚬   ∈  (  assIntOp  ‘ 𝑀 )  →   ⚬   clLaw  𝑀 ) ) | 
						
							| 10 | 1 9 | mpcom | ⊢ (  ⚬   ∈  (  assIntOp  ‘ 𝑀 )  →   ⚬   clLaw  𝑀 ) |