Metamath Proof Explorer


Theorem assintopcllaw

Description: The closure low holds for an associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009) (Revised by AV, 20-Jan-2020)

Ref Expression
Assertion assintopcllaw ( ∈ ( assIntOp ‘ 𝑀 ) → clLaw 𝑀 )

Proof

Step Hyp Ref Expression
1 elfvex ( ∈ ( assIntOp ‘ 𝑀 ) → 𝑀 ∈ V )
2 assintopval ( 𝑀 ∈ V → ( assIntOp ‘ 𝑀 ) = { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } )
3 2 eleq2d ( 𝑀 ∈ V → ( ∈ ( assIntOp ‘ 𝑀 ) ↔ ∈ { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ) )
4 breq1 ( 𝑜 = → ( 𝑜 assLaw 𝑀 assLaw 𝑀 ) )
5 4 elrab ( ∈ { 𝑜 ∈ ( clIntOp ‘ 𝑀 ) ∣ 𝑜 assLaw 𝑀 } ↔ ( ∈ ( clIntOp ‘ 𝑀 ) ∧ assLaw 𝑀 ) )
6 3 5 bitrdi ( 𝑀 ∈ V → ( ∈ ( assIntOp ‘ 𝑀 ) ↔ ( ∈ ( clIntOp ‘ 𝑀 ) ∧ assLaw 𝑀 ) ) )
7 clintopcllaw ( ∈ ( clIntOp ‘ 𝑀 ) → clLaw 𝑀 )
8 7 adantr ( ( ∈ ( clIntOp ‘ 𝑀 ) ∧ assLaw 𝑀 ) → clLaw 𝑀 )
9 6 8 syl6bi ( 𝑀 ∈ V → ( ∈ ( assIntOp ‘ 𝑀 ) → clLaw 𝑀 ) )
10 1 9 mpcom ( ∈ ( assIntOp ‘ 𝑀 ) → clLaw 𝑀 )