| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvex |
|- ( .o. e. ( assIntOp ` M ) -> M e. _V ) |
| 2 |
|
assintopval |
|- ( M e. _V -> ( assIntOp ` M ) = { o e. ( clIntOp ` M ) | o assLaw M } ) |
| 3 |
2
|
eleq2d |
|- ( M e. _V -> ( .o. e. ( assIntOp ` M ) <-> .o. e. { o e. ( clIntOp ` M ) | o assLaw M } ) ) |
| 4 |
|
breq1 |
|- ( o = .o. -> ( o assLaw M <-> .o. assLaw M ) ) |
| 5 |
4
|
elrab |
|- ( .o. e. { o e. ( clIntOp ` M ) | o assLaw M } <-> ( .o. e. ( clIntOp ` M ) /\ .o. assLaw M ) ) |
| 6 |
3 5
|
bitrdi |
|- ( M e. _V -> ( .o. e. ( assIntOp ` M ) <-> ( .o. e. ( clIntOp ` M ) /\ .o. assLaw M ) ) ) |
| 7 |
|
clintopcllaw |
|- ( .o. e. ( clIntOp ` M ) -> .o. clLaw M ) |
| 8 |
7
|
adantr |
|- ( ( .o. e. ( clIntOp ` M ) /\ .o. assLaw M ) -> .o. clLaw M ) |
| 9 |
6 8
|
biimtrdi |
|- ( M e. _V -> ( .o. e. ( assIntOp ` M ) -> .o. clLaw M ) ) |
| 10 |
1 9
|
mpcom |
|- ( .o. e. ( assIntOp ` M ) -> .o. clLaw M ) |