Metamath Proof Explorer


Theorem assintopcllaw

Description: The closure low holds for an associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009) (Revised by AV, 20-Jan-2020)

Ref Expression
Assertion assintopcllaw
|- ( .o. e. ( assIntOp ` M ) -> .o. clLaw M )

Proof

Step Hyp Ref Expression
1 elfvex
 |-  ( .o. e. ( assIntOp ` M ) -> M e. _V )
2 assintopval
 |-  ( M e. _V -> ( assIntOp ` M ) = { o e. ( clIntOp ` M ) | o assLaw M } )
3 2 eleq2d
 |-  ( M e. _V -> ( .o. e. ( assIntOp ` M ) <-> .o. e. { o e. ( clIntOp ` M ) | o assLaw M } ) )
4 breq1
 |-  ( o = .o. -> ( o assLaw M <-> .o. assLaw M ) )
5 4 elrab
 |-  ( .o. e. { o e. ( clIntOp ` M ) | o assLaw M } <-> ( .o. e. ( clIntOp ` M ) /\ .o. assLaw M ) )
6 3 5 bitrdi
 |-  ( M e. _V -> ( .o. e. ( assIntOp ` M ) <-> ( .o. e. ( clIntOp ` M ) /\ .o. assLaw M ) ) )
7 clintopcllaw
 |-  ( .o. e. ( clIntOp ` M ) -> .o. clLaw M )
8 7 adantr
 |-  ( ( .o. e. ( clIntOp ` M ) /\ .o. assLaw M ) -> .o. clLaw M )
9 6 8 syl6bi
 |-  ( M e. _V -> ( .o. e. ( assIntOp ` M ) -> .o. clLaw M ) )
10 1 9 mpcom
 |-  ( .o. e. ( assIntOp ` M ) -> .o. clLaw M )