| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvex |  |-  ( .o. e. ( assIntOp ` M ) -> M e. _V ) | 
						
							| 2 |  | assintopval |  |-  ( M e. _V -> ( assIntOp ` M ) = { o e. ( clIntOp ` M ) | o assLaw M } ) | 
						
							| 3 | 2 | eleq2d |  |-  ( M e. _V -> ( .o. e. ( assIntOp ` M ) <-> .o. e. { o e. ( clIntOp ` M ) | o assLaw M } ) ) | 
						
							| 4 |  | breq1 |  |-  ( o = .o. -> ( o assLaw M <-> .o. assLaw M ) ) | 
						
							| 5 | 4 | elrab |  |-  ( .o. e. { o e. ( clIntOp ` M ) | o assLaw M } <-> ( .o. e. ( clIntOp ` M ) /\ .o. assLaw M ) ) | 
						
							| 6 | 3 5 | bitrdi |  |-  ( M e. _V -> ( .o. e. ( assIntOp ` M ) <-> ( .o. e. ( clIntOp ` M ) /\ .o. assLaw M ) ) ) | 
						
							| 7 |  | clintopcllaw |  |-  ( .o. e. ( clIntOp ` M ) -> .o. clLaw M ) | 
						
							| 8 | 7 | adantr |  |-  ( ( .o. e. ( clIntOp ` M ) /\ .o. assLaw M ) -> .o. clLaw M ) | 
						
							| 9 | 6 8 | biimtrdi |  |-  ( M e. _V -> ( .o. e. ( assIntOp ` M ) -> .o. clLaw M ) ) | 
						
							| 10 | 1 9 | mpcom |  |-  ( .o. e. ( assIntOp ` M ) -> .o. clLaw M ) |