Metamath Proof Explorer


Theorem clmgrp

Description: A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion clmgrp WCModWGrp

Proof

Step Hyp Ref Expression
1 clmlmod WCModWLMod
2 lmodgrp WLModWGrp
3 1 2 syl WCModWGrp