Metamath Proof Explorer


Theorem clwlkcompim

Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 17-Feb-2021)

Ref Expression
Hypotheses isclwlke.v V=VtxG
isclwlke.i I=iEdgG
clwlkcomp.1 F=1stW
clwlkcomp.2 P=2ndW
Assertion clwlkcompim WClWalksGFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkP0=PF

Proof

Step Hyp Ref Expression
1 isclwlke.v V=VtxG
2 isclwlke.i I=iEdgG
3 clwlkcomp.1 F=1stW
4 clwlkcomp.2 P=2ndW
5 elfvex WClWalksGGV
6 clwlks ClWalksG=fg|fWalksGgg0=gf
7 6 a1i GVClWalksG=fg|fWalksGgg0=gf
8 7 eleq2d GVWClWalksGWfg|fWalksGgg0=gf
9 elopaelxp Wfg|fWalksGgg0=gfWV×V
10 9 anim2i GVWfg|fWalksGgg0=gfGVWV×V
11 10 ex GVWfg|fWalksGgg0=gfGVWV×V
12 8 11 sylbid GVWClWalksGGVWV×V
13 5 12 mpcom WClWalksGGVWV×V
14 1 2 3 4 clwlkcomp GVWV×VWClWalksGFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkP0=PF
15 13 14 syl WClWalksGWClWalksGFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkP0=PF
16 15 ibi WClWalksGFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkP0=PF