| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isclwlke.v |
|- V = ( Vtx ` G ) |
| 2 |
|
isclwlke.i |
|- I = ( iEdg ` G ) |
| 3 |
|
clwlkcomp.1 |
|- F = ( 1st ` W ) |
| 4 |
|
clwlkcomp.2 |
|- P = ( 2nd ` W ) |
| 5 |
|
elfvex |
|- ( W e. ( ClWalks ` G ) -> G e. _V ) |
| 6 |
|
clwlks |
|- ( ClWalks ` G ) = { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } |
| 7 |
6
|
a1i |
|- ( G e. _V -> ( ClWalks ` G ) = { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } ) |
| 8 |
7
|
eleq2d |
|- ( G e. _V -> ( W e. ( ClWalks ` G ) <-> W e. { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } ) ) |
| 9 |
|
elopaelxp |
|- ( W e. { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } -> W e. ( _V X. _V ) ) |
| 10 |
9
|
anim2i |
|- ( ( G e. _V /\ W e. { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } ) -> ( G e. _V /\ W e. ( _V X. _V ) ) ) |
| 11 |
10
|
ex |
|- ( G e. _V -> ( W e. { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } -> ( G e. _V /\ W e. ( _V X. _V ) ) ) ) |
| 12 |
8 11
|
sylbid |
|- ( G e. _V -> ( W e. ( ClWalks ` G ) -> ( G e. _V /\ W e. ( _V X. _V ) ) ) ) |
| 13 |
5 12
|
mpcom |
|- ( W e. ( ClWalks ` G ) -> ( G e. _V /\ W e. ( _V X. _V ) ) ) |
| 14 |
1 2 3 4
|
clwlkcomp |
|- ( ( G e. _V /\ W e. ( _V X. _V ) ) -> ( W e. ( ClWalks ` G ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |
| 15 |
13 14
|
syl |
|- ( W e. ( ClWalks ` G ) -> ( W e. ( ClWalks ` G ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |
| 16 |
15
|
ibi |
|- ( W e. ( ClWalks ` G ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |