Metamath Proof Explorer


Theorem clwwlknbp

Description: Basic properties of a closed walk of a fixed length as word. (Contributed by AV, 30-Apr-2021) (Proof shortened by AV, 22-Mar-2022)

Ref Expression
Hypothesis clwwlknwrd.v V=VtxG
Assertion clwwlknbp WNClWWalksNGWWordVW=N

Proof

Step Hyp Ref Expression
1 clwwlknwrd.v V=VtxG
2 1 clwwlknwrd WNClWWalksNGWWordV
3 clwwlknlen WNClWWalksNGW=N
4 2 3 jca WNClWWalksNGWWordVW=N