Metamath Proof Explorer


Theorem clwwlknnn

Description: The length of a closed walk of a fixed length as word is a positive integer. (Contributed by AV, 22-Mar-2022)

Ref Expression
Assertion clwwlknnn WNClWWalksNGN

Proof

Step Hyp Ref Expression
1 n0i WNClWWalksNG¬NClWWalksNG=
2 df-nel N¬N
3 2 biimpri ¬NN
4 3 olcd ¬NGVN
5 clwwlkneq0 GVNNClWWalksNG=
6 4 5 syl ¬NNClWWalksNG=
7 1 6 nsyl2 WNClWWalksNGN