Metamath Proof Explorer


Theorem cmdrcl

Description: Reverse closure for a colimit of a diagram. (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Assertion cmdrcl Could not format assertion : No typesetting found for |- ( X e. ( ( C Colimit D ) ` F ) -> F e. ( D Func C ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 cmdfval Could not format ( C Colimit D ) = ( f e. ( D Func C ) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) : No typesetting found for |- ( C Colimit D ) = ( f e. ( D Func C ) |-> ( ( C DiagFunc D ) ( C UP ( D FuncCat C ) ) f ) ) with typecode |-
2 1 mptrcl Could not format ( X e. ( ( C Colimit D ) ` F ) -> F e. ( D Func C ) ) : No typesetting found for |- ( X e. ( ( C Colimit D ) ` F ) -> F e. ( D Func C ) ) with typecode |-