Metamath Proof Explorer
Description: Reverse closure for a colimit of a diagram. (Contributed by Zhi Wang, 20-Nov-2025)
|
|
Ref |
Expression |
|
Assertion |
cmdrcl |
⊢ ( 𝑋 ∈ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmdfval |
⊢ ( 𝐶 Colimit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝑓 ) ) |
| 2 |
1
|
mptrcl |
⊢ ( 𝑋 ∈ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |