Metamath Proof Explorer


Theorem cmdrcl

Description: Reverse closure for a colimit of a diagram. (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Assertion cmdrcl ( 𝑋 ∈ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) )

Proof

Step Hyp Ref Expression
1 cmdfval ( 𝐶 Colimit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝑓 ) )
2 1 mptrcl ( 𝑋 ∈ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) )