Description: The domain of ( C Limit D ) is a relation. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmlmd2 | ⊢ Rel dom ( 𝐶 Limit 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc | ⊢ Rel ( 𝐷 Func 𝐶 ) | |
| 2 | ovex | ⊢ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ∈ V | |
| 3 | lmdfval | ⊢ ( 𝐶 Limit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) | |
| 4 | 2 3 | dmmpti | ⊢ dom ( 𝐶 Limit 𝐷 ) = ( 𝐷 Func 𝐶 ) |
| 5 | 4 | releqi | ⊢ ( Rel dom ( 𝐶 Limit 𝐷 ) ↔ Rel ( 𝐷 Func 𝐶 ) ) |
| 6 | 1 5 | mpbir | ⊢ Rel dom ( 𝐶 Limit 𝐷 ) |