Metamath Proof Explorer


Theorem reldmlmd2

Description: The domain of ( C Limit D ) is a relation. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Assertion reldmlmd2 Rel dom ( 𝐶 Limit 𝐷 )

Proof

Step Hyp Ref Expression
1 relfunc Rel ( 𝐷 Func 𝐶 )
2 ovex ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ∈ V
3 lmdfval ( 𝐶 Limit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) )
4 2 3 dmmpti dom ( 𝐶 Limit 𝐷 ) = ( 𝐷 Func 𝐶 )
5 4 releqi ( Rel dom ( 𝐶 Limit 𝐷 ) ↔ Rel ( 𝐷 Func 𝐶 ) )
6 1 5 mpbir Rel dom ( 𝐶 Limit 𝐷 )