| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
| 2 |
|
simpl |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → 𝑐 = 𝐶 ) |
| 3 |
1 2
|
oveq12d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( 𝑑 Func 𝑐 ) = ( 𝐷 Func 𝐶 ) ) |
| 4 |
2
|
fveq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( oppCat ‘ 𝑐 ) = ( oppCat ‘ 𝐶 ) ) |
| 5 |
1 2
|
oveq12d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( 𝑑 FuncCat 𝑐 ) = ( 𝐷 FuncCat 𝐶 ) ) |
| 6 |
5
|
fveq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( oppCat ‘ ( 𝑑 FuncCat 𝑐 ) ) = ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) |
| 7 |
4 6
|
oveq12d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( ( oppCat ‘ 𝑐 ) UP ( oppCat ‘ ( 𝑑 FuncCat 𝑐 ) ) ) = ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) ) |
| 8 |
|
oveq12 |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( 𝑐 Δfunc 𝑑 ) = ( 𝐶 Δfunc 𝐷 ) ) |
| 9 |
8
|
fveq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( oppFunc ‘ ( 𝑐 Δfunc 𝑑 ) ) = ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ) |
| 10 |
|
eqidd |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → 𝑓 = 𝑓 ) |
| 11 |
7 9 10
|
oveq123d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( ( oppFunc ‘ ( 𝑐 Δfunc 𝑑 ) ) ( ( oppCat ‘ 𝑐 ) UP ( oppCat ‘ ( 𝑑 FuncCat 𝑐 ) ) ) 𝑓 ) = ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) |
| 12 |
3 11
|
mpteq12dv |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( 𝑓 ∈ ( 𝑑 Func 𝑐 ) ↦ ( ( oppFunc ‘ ( 𝑐 Δfunc 𝑑 ) ) ( ( oppCat ‘ 𝑐 ) UP ( oppCat ‘ ( 𝑑 FuncCat 𝑐 ) ) ) 𝑓 ) ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) ) |
| 13 |
|
df-lmd |
⊢ Limit = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑓 ∈ ( 𝑑 Func 𝑐 ) ↦ ( ( oppFunc ‘ ( 𝑐 Δfunc 𝑑 ) ) ( ( oppCat ‘ 𝑐 ) UP ( oppCat ‘ ( 𝑑 FuncCat 𝑐 ) ) ) 𝑓 ) ) ) |
| 14 |
|
ovex |
⊢ ( 𝐷 Func 𝐶 ) ∈ V |
| 15 |
14
|
mptex |
⊢ ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) ∈ V |
| 16 |
12 13 15
|
ovmpoa |
⊢ ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( 𝐶 Limit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) ) |
| 17 |
|
reldmlmd |
⊢ Rel dom Limit |
| 18 |
17
|
ovprc |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( 𝐶 Limit 𝐷 ) = ∅ ) |
| 19 |
|
ancom |
⊢ ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ↔ ( 𝐷 ∈ V ∧ 𝐶 ∈ V ) ) |
| 20 |
|
reldmfunc |
⊢ Rel dom Func |
| 21 |
20
|
ovprc |
⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐷 Func 𝐶 ) = ∅ ) |
| 22 |
19 21
|
sylnbi |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( 𝐷 Func 𝐶 ) = ∅ ) |
| 23 |
22
|
mpteq1d |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) = ( 𝑓 ∈ ∅ ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) ) |
| 24 |
|
mpt0 |
⊢ ( 𝑓 ∈ ∅ ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) = ∅ |
| 25 |
23 24
|
eqtrdi |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) = ∅ ) |
| 26 |
18 25
|
eqtr4d |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( 𝐶 Limit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) ) |
| 27 |
16 26
|
pm2.61i |
⊢ ( 𝐶 Limit 𝐷 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐶 ) ↦ ( ( oppFunc ‘ ( 𝐶 Δfunc 𝐷 ) ) ( ( oppCat ‘ 𝐶 ) UP ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) 𝑓 ) ) |