| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( c = C /\ d = D ) -> d = D ) |
| 2 |
|
simpl |
|- ( ( c = C /\ d = D ) -> c = C ) |
| 3 |
1 2
|
oveq12d |
|- ( ( c = C /\ d = D ) -> ( d Func c ) = ( D Func C ) ) |
| 4 |
2
|
fveq2d |
|- ( ( c = C /\ d = D ) -> ( oppCat ` c ) = ( oppCat ` C ) ) |
| 5 |
1 2
|
oveq12d |
|- ( ( c = C /\ d = D ) -> ( d FuncCat c ) = ( D FuncCat C ) ) |
| 6 |
5
|
fveq2d |
|- ( ( c = C /\ d = D ) -> ( oppCat ` ( d FuncCat c ) ) = ( oppCat ` ( D FuncCat C ) ) ) |
| 7 |
4 6
|
oveq12d |
|- ( ( c = C /\ d = D ) -> ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) = ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) ) |
| 8 |
|
oveq12 |
|- ( ( c = C /\ d = D ) -> ( c DiagFunc d ) = ( C DiagFunc D ) ) |
| 9 |
8
|
fveq2d |
|- ( ( c = C /\ d = D ) -> ( oppFunc ` ( c DiagFunc d ) ) = ( oppFunc ` ( C DiagFunc D ) ) ) |
| 10 |
|
eqidd |
|- ( ( c = C /\ d = D ) -> f = f ) |
| 11 |
7 9 10
|
oveq123d |
|- ( ( c = C /\ d = D ) -> ( ( oppFunc ` ( c DiagFunc d ) ) ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) f ) = ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) |
| 12 |
3 11
|
mpteq12dv |
|- ( ( c = C /\ d = D ) -> ( f e. ( d Func c ) |-> ( ( oppFunc ` ( c DiagFunc d ) ) ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) f ) ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) |
| 13 |
|
df-lmd |
|- Limit = ( c e. _V , d e. _V |-> ( f e. ( d Func c ) |-> ( ( oppFunc ` ( c DiagFunc d ) ) ( ( oppCat ` c ) UP ( oppCat ` ( d FuncCat c ) ) ) f ) ) ) |
| 14 |
|
ovex |
|- ( D Func C ) e. _V |
| 15 |
14
|
mptex |
|- ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) e. _V |
| 16 |
12 13 15
|
ovmpoa |
|- ( ( C e. _V /\ D e. _V ) -> ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) |
| 17 |
|
reldmlmd |
|- Rel dom Limit |
| 18 |
17
|
ovprc |
|- ( -. ( C e. _V /\ D e. _V ) -> ( C Limit D ) = (/) ) |
| 19 |
|
ancom |
|- ( ( C e. _V /\ D e. _V ) <-> ( D e. _V /\ C e. _V ) ) |
| 20 |
|
reldmfunc |
|- Rel dom Func |
| 21 |
20
|
ovprc |
|- ( -. ( D e. _V /\ C e. _V ) -> ( D Func C ) = (/) ) |
| 22 |
19 21
|
sylnbi |
|- ( -. ( C e. _V /\ D e. _V ) -> ( D Func C ) = (/) ) |
| 23 |
22
|
mpteq1d |
|- ( -. ( C e. _V /\ D e. _V ) -> ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) = ( f e. (/) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) |
| 24 |
|
mpt0 |
|- ( f e. (/) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) = (/) |
| 25 |
23 24
|
eqtrdi |
|- ( -. ( C e. _V /\ D e. _V ) -> ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) = (/) ) |
| 26 |
18 25
|
eqtr4d |
|- ( -. ( C e. _V /\ D e. _V ) -> ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) ) |
| 27 |
16 26
|
pm2.61i |
|- ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) |